Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Talanta ; 274: 126041, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581854

RESUMO

This paper presents the development and optimization of a cost-effective paper electrochemical sensor for the detection of TNT using Fe3O4-Au core-shell nanoparticles modified with cysteamine (Fe3O4@Au/CA). The sensor was constructed by modifying a graphite paste with the aforementioned nanoparticles, which facilitated the formation of a Meisenheimer complex between cysteamine and TNT as an electron donor and an electron acceptor, respectively. The central composite design was employed to optimize four key parameters pH, modifier percentage, contact time, and buffer type to enhance the performance of the sensor. The detection limit was found to be 0.5 nM of TNT, while the linear range of the electrode response spanned from 0.002 µM to 10 µM. The simplicity and low cost of the sensor make it highly attractive for practical applications, particularly in scenarios where rapid and on-site TNT detection is required.

2.
Sci Rep ; 14(1): 13594, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867065

RESUMO

This research presents a compact portable electronic gas sensor that can be monitored through a smartphone application. The smart sensor utilizes three state-of-the-art sensors. The sensors integrate an ESP8266 microcontroller within the same device. This facilitates their integration with the electronics and enhances their performance. Herein, primarily focuses on utilizing the sensor to detect carbon monoxide. This article outlines the fabrication process of a gas sensor utilizing a P-N heterojunction, eliminating the need for a binder. The sensor consists of CuO/copper foam nanowires and hierarchical In2O3. In order to verify the system's functionality, it underwent testing with various levels of CO concentrations (10-900 ppm), including particular tests designed to examine the device's performance in different humidity and temperature circumstances. A mobile application for the provision of monitoring services has been developed at last. To process the information obtained from the gas sensor, an algorithm has been constructed, trained, and integrated into a smartphone for this purpose. This research demonstrated that a smartphone-coupled gas sensor is a viable system for real-time monitoring and the detection of CO gas.

3.
Sci Rep ; 14(1): 11526, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773136

RESUMO

This paper reports on the development of a flexible-wearable potentiometric sensor for real-time monitoring of sodium ion (Na+), potassium ion (K+), and pH in human sweat. Na0.44MnO2, polyaniline, and K2Co[Fe(CN)6] were used as sensing materials for Na+, H+ and K+ monitoring, respectively. The simultaneous potentiometric Na+, K+, and pH sensing were carried out by the developed sensor, which enables signal collection and transmission in real-time to the smartphone via a Wi-Fi access point. Then, the potentiometric responses were evaluated by a designed android application. Na+, K+, and pH sensors illustrated high sensitivity (59.7 ± 0.8 mV/decade for Na+, 57.8 ± 0.9 mV/decade for K+, and 54.7 ± 0.6 mV/pH for pH), excellent stability, and good batch-to-batch reproducibility. The results of on-body experiments demonstrated that the proposed platform is capable of real-time monitoring of the investigated ions.


Assuntos
Potássio , Potenciometria , Sódio , Suor , Dispositivos Eletrônicos Vestíveis , Humanos , Concentração de Íons de Hidrogênio , Potenciometria/métodos , Potenciometria/instrumentação , Sódio/análise , Suor/química , Potássio/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Tecnologia sem Fio/instrumentação , Smartphone , Reprodutibilidade dos Testes
4.
Sci Rep ; 14(1): 2480, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291089

RESUMO

2,4-Dinitrotoluene (2,4-DNT) as a priority and hazardous pollutant, is widely used in industrial and military activities. In this study the synergistic effect of Fe-RGO-BiVO4 nanocomposite in a non-thermal dielectric barrier discharge plasma reactor (NTP-DBD) for degrading 2,4-DNT was evaluated. Preparation of the Fe-RGO-BiVO4 nanocomposite was done by a stepwise chemical method depositing Fe and reduced graphene oxide (RGO) on BiVO4. Field emission scanning electron microscopy (FESEM), X-ray diffraction analysis (XRD), UV-vis diffuse reflectance spectra (DRS), and energy-dispersive X-ray spectroscopy mapping (EDS-mapping) validated the satisfactory synthesis of Fe-RGO-BiVO4. To find the optimal conditions and to determine the interaction of model parameters, a central composite design (RSM-CCD) had been employed. 2,4 DNT can be completely degraded at: initial 2,4-DNT concentration of 40 mg L-1, Fe-RGO-BiVO4 dosage of 0.75 g L-1, applied voltage of 21kV, reaction time of 30 min and pH equal to 7, while the single plasma process reached a degradation efficiency of 67%. The removal efficiency of chemical oxygen demand (COD) and total organic carbon (TOC) were 90.62% and 88.02% at 30 min contact time, respectively. Results also indicated that average oxidation state (AOS) and carbon oxidation state (COS) were enhanced in the catalytic NTP-DBD process, which demonstrate the effectiveness of proposed process for facilitating biodegradability of 2,4-DNT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA