Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; : e202402011, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39024522

RESUMO

Non-covalent chalcogen bond (ChB) interactions have found utility in many fields, including catalysis, organic semiconductors, and crystal engineering. In this study, the kinetic effects of ChB interactions of oxygen and sulfur were experimentally measured using a series of molecular rotors. The rotors were designed to form ChB interactions in the bond rotation transition states. This enabled their kinetic influences to be assessed by monitoring changes in rotational barriers. Despite forming weaker ChB interactions, the smaller chalcogens were able to stabilize transition states and had measurable kinetic effects. Sulfur stabilized the bond rotation transition state by as much as -7.2 kcal/mol without electron-withdrawing groups. The key was to design a system where the sulfur ðœŽ-hole was aligned with the lone pairs of the chalcogen bond acceptor. Oxygen rotors also could form transition state stabilizing ChB interactions but required electron-withdrawing groups. For both oxygen and sulfur ChB interactions, a strong correlation was observed between transition state stabilizing abilities and electrostatic potential (ESP) of the chalcogen, providing a useful predictive parameter for the rational design of future ChB systems.

2.
Org Lett ; 23(21): 8179-8182, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34670094

RESUMO

The attractive interaction between carbonyl oxygens and the π-face of aromatic surfaces was studied using N-phenylimide molecular rotors. The C═O···Ar interactions could stabilize the transition states but were half the strength of comparable C═O···C═O interactions. The C═O···Ar interaction had a significant electrostatic component but only a small orbital delocalization component.

3.
Chem Sci ; 11(28): 7487-7494, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34123031

RESUMO

A series of molecular rotors was designed to study and measure the rate accelerating effects of an intramolecular hydrogen bond. The rotors form a weak neutral O-H⋯O[double bond, length as m-dash]C hydrogen bond in the planar transition state (TS) of the bond rotation process. The rotational barrier of the hydrogen bonding rotors was dramatically lower (9.9 kcal mol-1) than control rotors which could not form hydrogen bonds. The magnitude of the stabilization was significantly larger than predicted based on the independently measured strength of a similar O-H⋯O[double bond, length as m-dash]C hydrogen bond (1.5 kcal mol-1). The origins of the large transition state stabilization were studied via experimental substituent effect and computational perturbation analyses. Energy decomposition analysis of the hydrogen bonding interaction revealed a significant reduction in the repulsive component of the hydrogen bonding interaction. The rigid framework of the molecular rotors positions and preorganizes the interacting groups in the transition state. This study demonstrates that with proper design a single hydrogen bond can lead to a TS stabilization that is greater than the intrinsic interaction energy, which has applications in catalyst design and in the study of enzyme mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA