Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Hematol ; 103(5): 1455-1482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37526673

RESUMO

Like almost all cancer types, timely diagnosis is needed for leukemias to be effectively cured. Drug efflux, attenuated drug uptake, altered drug metabolism, and epigenetic alterations are just several of the key mechanisms by which drug resistance develops. All of these mechanisms are orchestrated by up- and downregulators, in which non-coding RNAs (ncRNAs) do not encode specific proteins in most cases; albeit, some of them have been found to exhibit the potential for protein-coding. Notwithstanding, ncRNAs are chiefly known for their contribution to the regulation of physiological processes, as well as the pathological ones, such as cell proliferation, apoptosis, and immune responses. Specifically, in the case of leukemia chemo-resistance, ncRNAs have been recognized to be responsible for modulating the initiation and progression of drug resistance. Herein, we comprehensively reviewed the role of ncRNAs, specifically its effect on molecular mechanisms and signaling pathways, in the development of leukemia drug resistance.


Assuntos
Leucemia , MicroRNAs , Neoplasias , Humanos , RNA não Traduzido/genética , Transdução de Sinais/genética , Leucemia/tratamento farmacológico , Leucemia/genética , Resistência a Medicamentos , MicroRNAs/metabolismo
2.
Cell Commun Signal ; 22(1): 107, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341592

RESUMO

Cervical cancer (CC) is a common gynecologic malignancy, accounting for a significant proportion of women death worldwide. Human papillomavirus (HPV) infection is one of the major etiological causes leading to CC onset; however, genetic, and epigenetic factors are also responsible for disease expansion. Circular RNAs (circRNAs), which are known as a particular subset of non-coding RNA (ncRNA) superfamily, with covalently closed loop structures, have been reported to be involved in the progression of diverse diseases, especially neoplasms. In this framework, abnormally expressed circRNAs are in strong correlation with CC pathogenesis through regulating substantial signaling pathways. Also, these RNA molecules can be considered as promising biomarkers and therapeutic targets for CC diagnosis/prognosis and treatment, respectively. Herein, we first review key molecular mechanisms, including Wnt/ß-catenin, MAPK, and PI3K/Akt/mTOR signaling pathways, as well as angiogenesis and metastasis, by which circRNAs interfere with CC development. Then, diagnostic, prognostic, and therapeutic potentials of these ncRNA molecules will be highlighted in depth.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , RNA Circular/genética , Infecções por Papillomavirus/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética
3.
Cell Mol Neurobiol ; 43(7): 3277-3299, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37414973

RESUMO

MicroRNAs (miRNAs) are non-coding RNAs with only 20-22 nucleic acids that inhibit gene transcription and translation by binding to mRNA. MiRNAs have a diverse set of target genes and can alter most physiological processes, including cell cycle checkpoints, cell survival, and cell death mechanisms, affecting the growth, development, and invasion of various cancers, including gliomas. So optimum management of miRNA expression is essential for preserving a normal biological environment. Due to their small size, stability, and capability of specifically targeting oncogenes, miRNAs have emerged as a promising marker and new biopharmaceutical targeted therapy for glioma patients. This review focuses on the most common miRNAs associated with gliomagenesis and development by controlling glioma-determining markers such as angiogenesis. We also summarized the recent research about miRNA effects on signaling pathways, their mechanistic role and cellular targets in the development of gliomas angiogenesis. Strategies for miRNA-based therapeutic targets, as well as limitations in clinical applications, are also discussed.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/terapia , Glioma/metabolismo , Transdução de Sinais/genética , Oncogenes , Regulação Neoplásica da Expressão Gênica
4.
Cell Commun Signal ; 21(1): 33, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759799

RESUMO

Combined chemotherapy is a treatment method based on the simultaneous use of two or more therapeutic agents; it is frequently necessary to produce a more effective treatment for cancer patients. Such combined treatments often improve the outcomes over that of the monotherapy approach, as the drugs synergistically target critical cell signaling pathways or work independently at different oncostatic sites. A better prognosis has been reported in patients treated with combination therapy than in patients treated with single drug chemotherapy. In recent decades, 5-fluorouracil (5-FU) has become one of the most widely used chemotherapy agents in cancer treatment. This medication, which is soluble in water, is used as the first line of anti-neoplastic agent in the treatment of several cancer types including breast, head and neck, stomach and colon cancer. Within the last three decades, many studies have investigated melatonin as an anti-cancer agent; this molecule exhibits various functions in controlling the behavior of cancer cells, such as inhibiting cell growth, inducing apoptosis, and inhibiting invasion. The aim of this review is to comprehensively evaluate the role of melatonin as a complementary agent with 5-FU-based chemotherapy for cancers. Additionally, we identify the potential common signaling pathways by which melatonin and 5-FU interact to enhance the efficacy of the combined therapy. Video abstract.


Assuntos
Antineoplásicos , Neoplasias do Colo , Melatonina , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Melatonina/farmacologia , Melatonina/uso terapêutico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Apoptose
5.
Cell Commun Signal ; 20(1): 13, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090496

RESUMO

Glioblastoma multiforme (GBM), as a deadly and almost incurable brain cancer, is the most invasive form of CNS tumors that affects both children and adult population. It accounts for approximately half of all primary brain tumors. Despite the remarkable advances in neurosurgery, radiotherapy, and chemotherapeutic approaches, cell heterogeneity and numerous genetic alterations in cell cycle control, cell growth, apoptosis, and cell invasion, result in an undesirable resistance to therapeutic strategies; thereby, the median survival duration for GBM patients is unfortunately still less than two years. Identifying new therapeutics and employing the combination therapies may be considered as wonderful strategies against the GBM. In this regard, circular RNAs (circRNAs), as tumor inhibiting and/or stimulating RNA molecules, can regulate the cancer-developing processes, including cell proliferation, cell apoptosis, invasion, and chemoresistance. Hereupon, these molecules have been introduced as potentially effective therapeutic targets to defeat GBM. The current study aims to investigate the fundamental molecular and cellular mechanisms in association with circRNAs involved in GBM pathogenesis. Among multiple mechanisms, the PI3K/Akt/mTOR, Wnt/ß-catenin, and MAPK signaling, angiogenic processes, and metastatic pathways will be thoroughly discussed to provide a comprehensive understanding of the role of circRNAs in pathophysiology of GBM. Video Abstract.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Glioblastoma/patologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genética
6.
Cell Mol Biol Lett ; 27(1): 65, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922753

RESUMO

Gliomas are the most lethal primary brain tumors in adults. These highly invasive tumors have poor 5-year survival for patients. Gliomas are principally characterized by rapid diffusion as well as high levels of cellular heterogeneity. However, to date, the exact pathogenic mechanisms, contributing to gliomas remain ambiguous. MicroRNAs (miRNAs), as small noncoding RNAs of about 20 nucleotides in length, are known as chief modulators of different biological processes at both transcriptional and posttranscriptional levels. More recently, it has been revealed that these noncoding RNA molecules have essential roles in tumorigenesis and progression of multiple cancers, including gliomas. Interestingly, miRNAs are able to modulate diverse cancer-related processes such as cell proliferation and apoptosis, invasion and migration, differentiation and stemness, angiogenesis, and drug resistance; thus, impaired miRNAs may result in deterioration of gliomas. Additionally, miRNAs can be secreted into cerebrospinal fluid (CSF), as well as the bloodstream, and transported between normal and tumor cells freely or by exosomes, converting them into potential diagnostic and/or prognostic biomarkers for gliomas. They would also be great therapeutic agents, especially if they could cross the blood-brain barrier (BBB). Accordingly, in the current review, the contribution of miRNAs to glioma pathogenesis is first discussed, then their glioma-related diagnostic/prognostic and therapeutic potential is highlighted briefly.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Adulto , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Carcinogênese , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Humanos , MicroRNAs/genética
7.
J Cell Physiol ; 234(1): 42-50, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30078212

RESUMO

MicroRNAs (miRNAs) have recently become well-known efficacious biomarkers for the diagnosis of diabetic nephropathy (DN). MiRNAs, short noncoding RNAs, are posttranscriptional regulators of gene expression, which regulate several biological cell functions, including insulin production and secretion, as well as insulin resistance in tissues. Today, the focus of the medical world is centered on the role of miRNAs as mediators for different diseases, such as DN and end-stage renal diseases (ESRD). MiRNAs are stable and detectable in human biological fluids, so their detection for early diagnosis of different diseases is highly sensitive and specific. Previous reports have shown that the alteration of miRNA profiles significantly correlates with specific stages of DN, kidney fibrosis, and renal dysfunction. This review was aimed at assessing the pathway of different miRNA expressions responsible for insulin secretion disorder and DN progression.


Assuntos
Nefropatias Diabéticas/genética , Resistência à Insulina/genética , Secreção de Insulina/genética , MicroRNAs/genética , Biomarcadores/análise , Nefropatias Diabéticas/diagnóstico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Progressão da Doença , Regulação da Expressão Gênica/genética , Humanos , Insulina/genética , Insulina/metabolismo , Transdução de Sinais/genética
8.
Horm Metab Res ; 50(4): 271-279, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29475212

RESUMO

The current systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to summarize the effect of vitamin D supplementation on biomarkers of inflammation and oxidative stress among women with polycystic ovary syndrome (PCOS). Cochrane library, Embase, PubMed, and Web of Science database were searched to identify related randomized-controlled articles (RCTs) published up to November 2017. Two researchers assessed study eligibility, extracted data, and evaluated risk of bias of included RCTs, independently. To check heterogeneity Q-test and I2 statistics were used. Data were pooled by using the random-effect model and standardized mean difference (SMD) was considered as summary effect size. Seven RCTs were included into our meta-analysis. The findings showed that vitamin D supplementation in women with PCOS significantly decreased high-sensitivity C-reactive protein (hs-CRP) (SMD -1.03; 95% CI, -1.58, -0.49; p <0.001) and malondialdehyde (MDA) (SMD -1.64, 95% CI -2.26 to -1.02, p <0.001), and significantly increased total antioxidant capacity (TAC) levels (SMD 0.86, 95% CI 0.08 to 1.64, p=0.03). Vitamin D supplementation had no significant effect on nitric oxide (NO) (SMD 0.11, 95% CI -0.44 to 0.66, p=0.69) and total glutathione (GSH) levels (SMD 0.54, 95% CI -0.20 to 1.28, p=0.15). Overall, the current meta-analysis demonstrated that vitamin D supplementation to women with PCOS resulted in an improvement in hs-CRP, MDA and TAC, but did not affect NO and GSH levels.


Assuntos
Biomarcadores/sangue , Suplementos Nutricionais , Inflamação/sangue , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Síndrome do Ovário Policístico/sangue , Vitamina D/administração & dosagem , Feminino , Humanos , Inflamação/etiologia , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Vitaminas/administração & dosagem
10.
Artigo em Inglês | MEDLINE | ID: mdl-37357514

RESUMO

Inborn errors of metabolism (IEMs) are a vast array of inherited/congenital disorders, affecting a wide variety of metabolic pathways and/or biochemical processes inside the cells. Although IEMs are usually rare, they can be represented as serious health problems. During the neonatal period, these inherited defects can give rise to almost all key signs of liver malfunction, including jaundice, coagulopathy, hepato- and splenomegaly, ascites, etc. Since the liver is a vital organ with multiple synthetic, metabolic, and excretory functions, IEM-related hepatic dysfunction could seriously be considered life-threatening. In this context, the identification of those hepatic manifestations and their associated characteristics may promote the differential diagnosis of IEMs immediately after birth, making therapeutic strategies more successful in preventing the occurrence of subsequent events. Among all possible liver defects caused by IEMs, cholestatic jaundice, hepatosplenomegaly, and liver failure have been shown to be manifested more frequently. Therefore, the current study aims to review substantial IEMs that mostly result in the aforementioned hepatic disorders, relying on clinical principles, especially through the first years of life. In this article, a group of uncommon hepatic manifestations linked to IEMs is also discussed in brief.


Assuntos
Hepatopatias , Erros Inatos do Metabolismo , Humanos , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Hepatopatias/diagnóstico , Hepatopatias/etiologia , Redes e Vias Metabólicas
11.
Curr Mol Med ; 24(2): 153-166, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36627779

RESUMO

Polycystic ovary syndrome (PCOS) is a prevalent endocrine/metabolic disorder in women of reproductive age. PCOS is characterized by hyperandrogenism, polycystic ovary morphology, and ovulatory dysfunction/anovulation. It involves multiple effects in patients, including granulosa/theca cell hyperplasia, menstrual disturbances, infertility, acne, obesity, insulin resistance, and cardiovascular disorders. Biochemical analyses and the results of RNA sequencing studies in recent years have shown a type of non-coding RNAs as a splicing product known as circular RNAs (circRNAs). Several biological functions have been identified in relation to circRNAs, including a role in miRNA sponge, protein sequestration, increased parental gene expression, and translation leading to polypeptides. These circular molecules are more plentiful and specialized than other types of RNAs. For this reason, they are referred to as potential biomarkers in different diseases. Evidence suggests that circRNAs may have regulatory potentials through different signaling pathways, such as the miRNA network. Probably most experts in the field of obstetricians are not aware of circRNAs as a useful biomarker. Therefore, this review focused on the researches that have been done on the involvement of circRNAs in PCOS and summarized recent supportive evidence, and evaluated the circRNA association and mechanisms involved in PCOS.


Assuntos
Hiperandrogenismo , Resistência à Insulina , MicroRNAs , Síndrome do Ovário Policístico , Humanos , Feminino , Síndrome do Ovário Policístico/genética , RNA Circular/genética , MicroRNAs/genética , Biomarcadores
12.
Pathol Res Pract ; 257: 155316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692125

RESUMO

Non-small cell lung cancer (NSCLC), accounting for more than 80% of all cases, is the predominant form of lung cancer and the leading cause of cancer-related deaths worldwide. Significant progress has been made in diagnostic techniques, surgical interventions, chemotherapy protocols, and targeted therapies at the molecular level, leading to enhanced treatment outcomes in patients with NSCLC. Extensive evidence supports the use of circular RNAs (circRNAs), a specific category of naturally occurring non-coding small RNAs (ncRNAs), for the diagnosis, monitoring of treatment efficacy, and assessment of survival in NSCLC. CircRNAs have been identified to play significant roles in various aspects of cancer formation, either as tumor suppressors or tumor promoters, contributing to cancer development through several signaling pathways, including the phosphoinositide 3-kinases (PI3Ks) pathway. This pathway is well-established because of its regulatory role in essential cellular processes. CircRNAs regulate the PI3K/AKT pathway by targeting diverse cellular elements. This review aims to provide insight into the involvement of several circRNAs linked to the PI3K/AKT pathway in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fosfatidilinositol 3-Quinases , RNA Circular , Transdução de Sinais , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , RNA Circular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Transdução de Sinais/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Regulação Neoplásica da Expressão Gênica
13.
Curr Med Chem ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38258785

RESUMO

The most prevalent and severe malignancy of the central nervous system within the brain is glioma. Glioma is a vascularized cancer, and angiogenesis is necessary for glioma growth, invasion, and recurrence. It is also believed that this factor is this factor to be accountable for therapy resistance in many cancers, including glioma. The process of angiogenesis, which plays a crucial role in both health and disease situations such as cancer, involves the creation of new blood vessels from pre-existing ones. Non-coding RNAs (ncRNAs) are unique molecules that have been found to possess a wide range of abilities to modify the expression of various genes. They carry out their gene-modulating roles at a variety of distinct levels, including post-transcriptional and post-translational levels. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs) are a group of ncRNA that have attracted particular attention and are involved in the angiogenesis mechanism in cancer. Understanding the regulatory mechanisms of these RNAs in the angiogenesis process in gliomas provides unique fundamental information about the process of tumor-associated neovascularization. On the other hand, due to developments in the characterisation of lncRNAs and circRNAs, these novel structures may potentially be used in clinics as possible biomarkers for treatment strategies that target tumor angiogenesis. Throughout the review, new knowledge and views about the angioregulatory function of circRNAs and lncRNAs in gliomas have been presented. Additionally, we talk about the novel idea of ncRNA-based therapeutics for gliomas in the future.

14.
Curr Med Chem ; 31(11): 1404-1426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36876847

RESUMO

Heart failure (HF) is a public health issue that imposes high costs on healthcare systems. Despite the significant advances in therapies and prevention of HF, it remains a leading cause of morbidity and mortality worldwide. The current clinical diagnostic or prognostic biomarkers, as well as therapeutic strategies, have some limitations. Genetic and epigenetic factors have been identified to be central to the pathogenesis of HF. Therefore, they might provide promising novel diagnostic and therapeutic approaches for HF. Long non-coding RNAs (lncRNAs) belong to a group of RNAs that are produced by RNA polymerase II. These molecules play an important role in the functioning of different cell biological processes, such as transcription and regulation of gene expression. LncRNAs can affect different signaling pathways by targeting biological molecules or a variety of different cellular mechanisms. The alteration in their expression has been reported in different types of cardiovascular diseases, including HF, supporting the theory that they are important in the development and progression of heart diseases. Therefore, these molecules can be introduced as diagnostic, prognostic, and therapeutic biomarkers in HF. In this review, we summarize different lncRNAs as diagnostic, prognostic, and therapeutic biomarkers in HF. Moreover, we highlight various molecular mechanisms dysregulated by different lncRNAs in HF.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/genética , Cardiomegalia/diagnóstico , Cardiomegalia/genética , Cardiomegalia/patologia , Doenças Cardiovasculares/diagnóstico , Biomarcadores
15.
Curr Protein Pept Sci ; 25(1): 59-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37608655

RESUMO

Frequent exposure to various external and internal adverse forces (stresses) disrupts cell protein homeostasis through endoplasmic reticulum (ER) capacity saturation. This process leads to the unfolded protein response (UPR), which aims to re-establish/maintain optimal cellular equilibrium. This complex mechanism is involved in the pathogenesis of various disorders, such as metabolic syndrome, fibrotic diseases, neurodegeneration, and cancer, by altering cellular metabolic changes integral to activating the hepatic stellate cells (HSCs). The development of hepatic fibrosis is one of the consequences of UPR activation. Therefore, novel therapies that target the UPR pathway effectively and specifically are being studied. This article covers the involvement of the UPR signaling pathway in cellular damage in liver fibrosis. Investigating the pathogenic pathways related to the ER/UPR stress axis that contribute to liver fibrosis can help to guide future drug therapy approaches.


Assuntos
Cirrose Hepática , Resposta a Proteínas não Dobradas , Humanos , Cirrose Hepática/patologia , Estresse do Retículo Endoplasmático/fisiologia , Transdução de Sinais , Células-Tronco/metabolismo
16.
Biomed Pharmacother ; 172: 116248, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325262

RESUMO

Myocardial infarction (MI) is the leading cause of heart failure (HF), accounting for high mortality and morbidity worldwide. As a consequence of ischemia/reperfusion injury during MI, multiple cellular processes such as oxidative stress-induced damage, cardiomyocyte death, and inflammatory responses occur. In the next stage, the proliferation and activation of cardiac fibroblasts results in myocardial fibrosis and HF progression. Therefore, developing a novel therapeutic strategy is urgently warranted to restrict the progression of pathological cardiac remodeling. Recently, targeting long non-coding RNAs (lncRNAs) provided a novel insight into treating several disorders. In this regard, numerous investigations have indicated that several lncRNAs could participate in the pathogenesis of MI-induced cardiac remodeling, suggesting their potential therapeutic applications. In this review, we summarized lncRNAs displayed in the pathophysiology of cardiac remodeling after MI, emphasizing molecular mechanisms. Also, we highlighted the possible translational role of lncRNAs as therapeutic targets for this condition and discussed the potential role of exosomes in delivering the lncRNAs involved in post-MI cardiac remodeling.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Remodelação Ventricular/genética , Infarto do Miocárdio/genética , Insuficiência Cardíaca/genética , Miócitos Cardíacos
17.
Iran J Allergy Asthma Immunol ; 22(1): 91-98, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37002634

RESUMO

Some risk causes may be associated with the severity of COVID-19. The central host-pathogen factors might affect infection are human receptor angiotensin-converting enzyme 2 (ACE2), trans-membrane protease serine 2 (TMPRSS2), and SARS-CoV-2 surface spike (S)-protein. The main purpose of this study was to determine the differences in the expression the metalloproteinases-2  (MMP-2), MMP-9, ACE2, and TMPRSS2 genes and their correlation with lymphopenia in the mild and severe types of the COVID-19 patients. Eighty-eight patients, aged 36 to 60 years old with the mild (n=44) and severe (n=44) types of COVID-19 were enrolled. Total RNA was isolated from the peripheral blood mononuclear cells (PBMCs). The changes of MMP-2, MMP-9, ACE2 and TMPRSS2 gene expression in PBMCs from mild and severe COVID-19 patients were examined by the real time-quantitative polymerase chain reaction (RT-qPCR) assay and, compared between the groups. Data were collected from May 2021 to March 2022. The mean age of the patients in both groups was 48 (interquartile range, 36-60), and there were no appreciable differences in age or gender distribution between the two groups. The present study showed that a significant increase in the expression of ACE2, TMPRSS2, MMP-2, and MMP-9 genes in the severe type of the COVID-19 patients compared, to the mild type of the COVID-19 patients. Overall, it suggests the expression levels of these genes on the PBMC surface in the immune system are susceptible to infection by SARS-COV-2 and therefore could potentially predict the patients' outcome.


Assuntos
COVID-19 , Linfopenia , Humanos , Adulto , Pessoa de Meia-Idade , COVID-19/genética , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Leucócitos Mononucleares , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Linfopenia/genética , Serina Endopeptidases/genética
18.
Mini Rev Med Chem ; 23(11): 1167-1192, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35642112

RESUMO

Gliomas are the most common malignant cancers of the brain that have unregulated proliferation and are known as highly invasive tumors. Hence, their relapse rate is high, and the prognosis is low. Despite remarkable advances in neuroimaging, neurosurgery, and radiation therapy, they, especially glioblastoma, are highly resistant to treatments, including radiotherapy, surgery, and temozolomide chemotherapy. The average survival rate for patients with malignant glioma is still less than two years. Accordingly, the search for new treatment options has recently become an urgent need. Today, a number of nutraceuticals have been considered because of their special role in inhibiting the angiogenic process, metastasis, and apoptosis, resulting in the inhibition of tumor growth, including glioma. Nutraceuticals can disrupt cancer cells by affecting different pathways. In fact, these compounds can reduce the growth of cancer cells, inhibit their proliferation and angiogenesis, as well as induce apoptosis in these cells and play an important role in various stages of treatment. One of the key targets of nutraceuticals may be to regulate cellular signaling pathways, such as PI3K/Akt/mTORC1, JAK/STAT, and GSK-3, or to exert their effects through other mechanisms, such as cytokine receptors and inflammatory pathways, reactive oxygen species, and miRNAs. This review refers to the results of recent studies and target molecules as well as signaling pathways affected by some nutraceuticals in glioma cells. These studies indicated that clinical trials are imminent and new approaches can be beneficial for patients.


Assuntos
Glioma , Humanos , Animais , Suplementos Nutricionais , Glioma/dietoterapia , Transdução de Sinais , Antineoplásicos/uso terapêutico , Apoptose
19.
EXCLI J ; 22: 645-669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636026

RESUMO

Circular RNAs (CircRNAs) are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. CircRNA dysregulation has been shown to disrupt the interaction of the Wnt/ß-catenin pathway, which regulates several biological processes involved in tumorigenesis, thereby contributing to the development and progression of cancer. Interactions of tumor-derived circRNAs with the Wnt/ß-catenin signaling pathway provide both clinical diagnostic biomarkers and promising therapeutic targets. In this review, we outlined current evidence on the roles of circRNAs associated with the Wnt/ß-catenin pathway in regulating lung cancer formation and development. We believe that our findings will assist in the advancement or establishment of circRNA-based lung cancer therapeutic approaches.

20.
Curr Mol Pharmacol ; 16(4): 448-464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36043753

RESUMO

The increasing number of cases of diabetes mellitus (DM) and related diseases has become a global health concern. In this context, controlling blood glucose levels is critical to prevent and/or slow down the development of diabetes-related complications. Incretins, as gutderived hormones that trigger the post-meal secretion of insulin, are a well-known family of blood glucose modulators. Currently, incretin medications, including glucagon-like peptide-1 receptor agonist (GLP-1RA) and dipeptidyl peptidase-4 (DPP-4) inhibitors, are extensively used to treat patients with type 2 diabetes mellitus (T2D). Several experimental and clinical studies illustrate that these metabolic hormones exert their antidiabetic effects through multiple molecular mechanisms. Accordingly, the current review aims to investigate key mechanisms and signaling pathways, such as the cAMP/PKA, Nrf2, PI3K/Akt, and AMPK pathways, associated with the antidiabetic effects of incretins. It also summarizes the outcomes of a group of clinical trials evaluating the incretins' antidiabetic potential in diabetic patients.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Incretinas/uso terapêutico , Incretinas/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia/metabolismo , Fosfatidilinositol 3-Quinases , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA