Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Evol Biol ; 37(6): 631-641, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38279952

RESUMO

Metal accumulation is used by some plants as a defence against herbivores. Yet, herbivores may adapt to these defences, becoming less susceptible. Moreover, ecosystems often contain plants that do and do not accumulate metals, but whether such heterogeneity affects herbivore adaptation remains understudied. Here, we performed experimental evolution to test whether the spider mite Tetranychus evansi adapts to plants with high cadmium concentrations, in homogeneous (plants with cadmium) or heterogeneous (plants with or without cadmium) environments. For that we used tomato plants, which accumulate cadmium, thus affecting the performance of these spider mites. We measured mite fecundity, hatching rate, and the number of adult offspring after 12 and 33 generations and habitat choice after 14 and 51 generations, detecting no trait change, which implies the absence of adaptation. We then tested whether this was due to a lack of genetic variation in the traits measured and, indeed, additive genetic variance was low. Interestingly, despite no signs of adaptation, we observed a decrease in fecundity and number of adult offspring produced on cadmium-free plants, in the populations evolving in environments with cadmium. Therefore, evolving in environments with cadmium reduces the growth rate of spider mite populations on non-accumulating plants. Possibly, other traits contributed to population persistence on plants with cadmium. This calls for more studies addressing herbivore adaptation to plant metal accumulation.


Assuntos
Cádmio , Herbivoria , Tetranychidae , Animais , Tetranychidae/fisiologia , Tetranychidae/genética , Cádmio/metabolismo , Solanum lycopersicum , Adaptação Fisiológica , Fertilidade , Feminino
2.
Euro Surveill ; 29(21)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38785087

RESUMO

An outbreak of hepatitis A is ongoing in Portugal, with 71 confirmed cases from 7 October 2023 to 24 April 2024. Most cases are male, aged 18-44 years, with many identifying as men who have sex with men (MSM) and reported as suspected sexual transmission. Phylogenetic analysis identified the subgenotype IA, VRD 521-2016 strain, last observed in an MSM-associated multi-country outbreak in 2016 to 2018. We wish to alert colleagues in other countries to investigate potential similar spread.


Assuntos
Surtos de Doenças , Genótipo , Hepatite A , Homossexualidade Masculina , Filogenia , Humanos , Masculino , Portugal/epidemiologia , Hepatite A/epidemiologia , Hepatite A/transmissão , Homossexualidade Masculina/estatística & dados numéricos , Adulto , Adolescente , Adulto Jovem , Vírus da Hepatite A/genética , Vírus da Hepatite A/isolamento & purificação , Vírus da Hepatite A/classificação , Pessoa de Meia-Idade , Comportamento Sexual , Feminino , Busca de Comunicante
3.
Am Nat ; 202(3): 322-336, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37606949

RESUMO

AbstractIn cannibalistic species, selection to avoid conspecifics may stem from the need to avoid being eaten or to avoid competition. Individuals may thus use conspecific cues to modulate their behavior to such threats. Yet the nature of variation for such cues remains elusive. Here, we use a half-sib/full-sib design to evaluate the contribution of (indirect) genetic or environmental effects to the behavioral response of the cannibalistic wolf spider Lycosa fasciiventris (Dufour, 1835) toward conspecific cues. Spiders showed variation in relative occupancy time, activity, and velocity on patches with or without conspecific cues, but direct genetic variance was found only for occupancy time. These three traits were correlated and could be lumped in a principal component: spiders spending more time in patches with conspecific cues moved less and more slowly in those areas. Genetic and/or environmental components of carapace width and weight loss in the social partner, which may reflect the quality and/or quantity of cues produced, were significantly correlated with this principal component, with larger partners causing focal individuals to move more slowly. Therefore, environmental and genetic trait variation in social partners may maintain trait diversity in focal individuals, even in the absence of direct genetic variation.


Assuntos
Aranhas , Animais , Aranhas/genética , Canibalismo , Exoesqueleto , Clima , Sinais (Psicologia)
4.
Ecol Lett ; 25(7): 1629-1639, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35596732

RESUMO

Historical contingency, such as the order of species arrival, can modify competitive outcomes via niche modification or pre-emption. However, how these mechanisms ultimately modify stabilising niche and average fitness differences remains largely unknown. By experimentally assembling two congeneric spider mite species feeding on tomato plants during two generations, we show that order of arrival affects species' competitive ability and changes the outcome of competition. Contrary to expectations, order of arrival did not cause positive frequency dependent priority effects. Instead, coexistence was predicted when the inferior competitor (Tetranychus urticae) arrived first. In that case, T. urticae colonised the preferred feeding stratum (leaves) of T. evansi leading to spatial niche pre-emption, which equalised fitness and reduced niche differences, driving community assembly to a close-to-neutrality scenario. Our study demonstrates how the order of species arrival and the spatial context of competitive interactions may jointly determine whether species can coexist.


Assuntos
Solanum lycopersicum , Tetranychidae , Animais , Folhas de Planta , Plantas
5.
Proc Biol Sci ; 288(1958): 20211604, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34465242

RESUMO

In seasonal environments, sinks that are more persistent than sources may serve as temporal stepping stones for specialists. However, this possibility has to our knowledge, not been demonstrated to date, as such environments are thought to select for generalists, and the role of sinks, both in the field and in the laboratory, is difficult to document. Here, we used laboratory experiments to show that herbivorous arthropods associated with seasonally absent main (source) habitats can endure on a suboptimal (sink) host for several generations, albeit with a negative growth rate. Additionally, they dispersed towards this host less often than towards the main host and accepted it less often than the main host. Finally, repeated experimental evolution attempts revealed no adaptation to the suboptimal host. Nevertheless, field observations showed that arthropods are found in suboptimal habitats when the main habitat is unavailable. Together, these results show that evolutionary rescue in the suboptimal habitat is not possible. Instead, the sink habitat functions as a temporal stepping stone, allowing for the persistence of a specialist when the source habitat is gone.


Assuntos
Ecossistema , Herbivoria , Adaptação Fisiológica , Estações do Ano
6.
J Evol Biol ; 34(3): 525-536, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314358

RESUMO

Both sex allocation and sexual conflict can be modulated by spatial structure. However, how the interplay between the type of dispersal and the scale of competition simultaneously affects these traits in sub-divided populations is rarely considered. We investigated sex allocation and sexual conflict evolution in meta-populations of the spider mite Tetranychus urticae evolving under budding (pairing females from the same patch) or random (pairing females from different patches) dispersal and either local (fixed sampling from each subpopulation) or global (sampling as a function of subpopulation productivity) competition. Females evolving under budding dispersal produced less female-biased offspring sex ratios than those from the random dispersal selection regimes, contradicting theoretical predictions. In contrast, the scale of competition did not strongly affect sex allocation. Offspring sex ratio and female fecundity were unaffected by the number of mates, but female fecundity was highest when their mates evolved under budding dispersal, suggesting these males inflict less harm than those evolving under random dispersal. This work highlights that population structure can impact the evolution of sex allocation and sexual conflict. Moreover, selection on either trait may reciprocally affect the evolution of the other, for example via effects on fecundity.


Assuntos
Distribuição Animal , Evolução Biológica , Seleção Genética , Razão de Masculinidade , Tetranychidae/genética , Animais , Feminino , Fertilidade , Masculino , Caracteres Sexuais
7.
Heredity (Edinb) ; 126(4): 684-694, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33452465

RESUMO

The relative body size at which predators are willing to attack prey, a key trait for predator-prey interactions, is usually considered invariant. However, this ratio can vary widely among individuals or populations. Identifying the range and origin of such variation is key to understanding the strength and constraints on selection in both predators and prey. Still, these sources of variation remain largely unknown. We filled this gap by measuring the genetic, maternal and environmental variation of the maximum prey-to-predator size ratio (PPSRmax) in juveniles of the wolf spider Lycosa fasciiventris using a paternal half-sib split-brood design, in which each male was paired with two females and the offspring reared in two food environments: poor and rich. Each juvenile spider was then sequentially offered crickets of decreasing size and the maximum prey size killed was determined. We also measured body size and body condition of spiders upon emergence and just before the trial. We found low, but significant heritability (h2 = 0.069) and dominance and common environmental variance (d2 + 4c2 = 0.056). PPSRmax was also partially explained by body condition (during trial) but there was no effect of the rearing food environment. Finally, a maternal correlation between body size early in life and PPSRmax indicated that offspring born larger were less predisposed to feed on larger prey later in life. Therefore, PPSRmax, a central trait in ecosystems, can vary widely and this variation is due to different sources, with important consequences for changes in this trait in the short and long terms.


Assuntos
Comportamento Predatório , Aranhas , Animais , Tamanho Corporal , Ecossistema , Feminino , Masculino , Aranhas/genética
8.
Heredity (Edinb) ; 124(4): 603-617, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32047292

RESUMO

Although the diversity of bacterial endosymbionts in arthropods is well documented, whether and how such diversity is maintained remains an open question. We investigated the temporal changes occurring in the prevalence and composition of endosymbionts after transferring natural populations of Tetranychus spider mites from the field to the laboratory. These populations, belonging to three different Tetranychus species (T. urticae, T. ludeni and T. evansi) carried variable infection frequencies of Wolbachia, Cardinium, and Rickettsia. We report a rapid change of the infection status of these populations after only 6 months of laboratory rearing, with an apparent loss of Rickettsia and Cardinium, while Wolbachia apparently either reached fixation or was lost. We show that Wolbachia had variable effects on host longevity and fecundity, and induced variable levels of cytoplasmic incompatibility (CI) in each fully infected population, despite no sequence divergence in the markers used and full CI rescue between all populations. This suggests that such effects are largely dependent upon the host genotype. Subsequently, we used these data to parameterize a theoretical model for the invasion of CI-inducing symbionts in haplodiploids, which shows that symbiont effects are sufficient to explain their dynamics in the laboratory. This further suggests that symbiont diversity and prevalence in the field are likely maintained by environmental heterogeneity, which is reduced in the laboratory. Overall, this study highlights the lability of endosymbiont infections and draws attention to the limitations of laboratory studies to understand host-symbiont interactions in natural populations.


Assuntos
Bacteroidetes , Rickettsia , Simbiose , Tetranychidae , Wolbachia , Animais , Bacteroidetes/genética , Feminino , Laboratórios , Rickettsia/genética , Tetranychidae/microbiologia , Wolbachia/genética
9.
J Anim Ecol ; 89(4): 1045-1054, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31872443

RESUMO

Different patterns of sperm precedence are expected to entail different costs and benefits of mating for each sex that translate into distinct predictions regarding mating system evolution. Still, most studies addressing these costs and benefits have focused on species with mixed paternity or last male precedence, neglecting first-male sperm precedence. We attempted to understand whether this latter pattern of sperm precedence translates into different costs and benefits for each sex in the haplodiploid spider mite Tetranychus urticae, a species in which female multiple mating is prevalent but most offspring are sired by first males. First, we assessed the stability of the sperm precedence pattern. To do so, we measured offspring paternity after exposing females to a different number of matings and mating intervals. Next, to determine the potential costs or benefits of multiple mating for females under different contexts, we measured the fecundity and survival of females that re-mated at different time points. To measure the potential costs of multiple mating for males, we analysed male survival in the presence of different numbers of virgin or mated females. We also tested whether males can reduce offspring production of their competitors, by reducing the production of fertilized offspring of mated females. We found no change in the pattern of sperm precedence, independently of the mating interval between matings and the number of matings. Females paid a cost of mating, as multiply-mated females laid fewer eggs than once-mated females. However, while males had reduced survival when exposed to an intermediate number of virgin females, they paid no additional costs of mating with mated females. Moreover, females that mated multiple times produced fewer fertilized offspring than females that mated once. Thus, males that copulated with mated females reduced the fitness of other males, potentially leading to a relative fitness benefit for themselves. Our results show that complex costs and benefits may arise in males in species with first-male sperm precedence. How these costs and benefits affect the maintenance of selection for polyandry remains an open question.


Assuntos
Reprodução , Comportamento Sexual Animal , Animais , Análise Custo-Benefício , Feminino , Fertilidade , Masculino , Espermatozoides
10.
Echocardiography ; 37(1): 132-134, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31872908

RESUMO

Epipericardial fat necrosis (EFN) is an uncommon self-limiting benign condition that can present with substantial chest pain. We present a case of an otherwise healthy 42-year-old man who presented with severe chest pain in the emergency department. Initial cardiopulmonary workup was unrevealing. Contrast-enhanced thorax CT demonstrated an increased radiolucency and nodularity of anterior pericardial fat consistent with epipericardial fat necrosis. The transthoracic echocardiogram was normal, and cardiac magnetic resonance imaging confirmed the lesion. Combined anti-inflammatory therapy was started with favorable evolution.


Assuntos
Necrose Gordurosa , Adulto , Dor no Peito/diagnóstico , Dor no Peito/etiologia , Diagnóstico Diferencial , Necrose Gordurosa/diagnóstico , Necrose Gordurosa/diagnóstico por imagem , Humanos , Masculino , Pericárdio/diagnóstico por imagem , Tomografia Computadorizada por Raios X
11.
Oecologia ; 189(1): 111-122, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30511092

RESUMO

To fight infection, arthropods rely on the deployment of an innate immune response but also upon physical/chemical barriers and avoidance behaviours. However, most studies focus on immunity, with other defensive mechanisms being relatively overlooked. We have previously shown that the spider mite Tetranychus urticae does not mount an induced immune response towards systemic bacterial infections, entailing very high mortality rates. Therefore, we hypothesized that other defence mechanisms may be operating to minimize infection risk. Here, we test (a) if spider mites are also highly susceptible to other infection routes-spraying and feeding-and (b) if they display avoidance behaviours towards infected food. Individuals sprayed with or fed on Escherichia coli or Pseudomonas putida survived less than the control, pointing to a deficient capacity of the gut epithelium, and possibly of the cuticle, to contain bacteria. Additionally, we found that spider mites prefer uninfected food to food contaminated with bacteria, a choice that probably does not rely on olfactory cues. Our results suggest that spider mites may rely mostly on avoidance behaviours to minimize bacterial infection and highlight the multi-layered nature of immune strategies present in arthropods.


Assuntos
Artrópodes , Infecções Bacterianas , Ácaros , Tetranychidae , Animais , Olfato
12.
PLoS Genet ; 12(9): e1006297, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27684942

RESUMO

Microbial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading to their fixation. Flies carrying these selected Wolbachia variants have higher survival and fertility upon viral infection when compared to flies with the other variants. These findings demonstrate how the interaction of a host with pathogens shapes the genetic composition of symbiont populations. Furthermore, host adaptation can result from the evolution of its symbionts, with host and symbiont functioning as a single evolutionary unit.

13.
Proc Natl Acad Sci U S A ; 113(35): 9840-5, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27535932

RESUMO

The evolution of resource use in herbivores has been conceptualized as an analog of the theory of island biogeography, assuming that plant species are islands separated by phylogenetic distances. Despite its usefulness, this analogy has paradoxically led to neglecting real biogeographical processes in the study of macroevolutionary patterns of herbivore-plant interactions. Here we show that host use is mostly determined by the geographical cooccurrence of hosts and parasites in spider mites (Tetranychidae), a globally distributed group of plant parasites. Strikingly, geography accounts for most of the phylogenetic signal in host use by these parasites. Beyond geography, only evolutionary transitions among major plant lineages (i.e., gymnosperms, commelinids, and eudicots) shape resource use patterns in these herbivores. Still, even these barriers have been repeatedly overcome in evolutionary time, resulting in phylogenetically diverse parasite communities feeding on similar hosts. Therefore, our results imply that patterns of apparent evolutionary conservatism may largely be a byproduct of the geographic cooccurrence of hosts and parasites.


Assuntos
Coevolução Biológica , Interações Hospedeiro-Parasita , Modelos Genéticos , Plantas/classificação , Tetranychidae/classificação , Distribuição Animal/fisiologia , Animais , Geografia , Herbivoria/fisiologia , Filogenia , Dispersão Vegetal/fisiologia , Plantas/genética , Plantas/parasitologia , Tetranychidae/genética
14.
Int J Mol Sci ; 19(6)2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29914126

RESUMO

Some herbivores suppress plant defenses, which may be viewed as a result of the coevolutionary arms race between plants and herbivores. However, this ability is usually studied in a one-herbivore-one-plant system, which hampers comparative studies that could corroborate this hypothesis. Here, we extend this paradigm and ask whether the herbivorous spider-mite Tetranychus evansi, which suppresses the jasmonic-acid pathway in tomato plants, is also able to suppress defenses in other host plants at different phylogenetic distances from tomatoes. We test this using different plants from the Solanales order, namely tomato, jimsonweed, tobacco, and morning glory (three Solanaceae and one Convolvulaceae), and bean plants (Fabales). First, we compare the performance of T. evansi to that of the other two most-commonly found species of the same genus, T. urticae and T. ludeni, on several plants. We found that the performance of T. evansi is higher than that of the other species only on tomato plants. We then showed, by measuring trypsin inhibitor activity and life history traits of conspecific mites on either clean or pre-infested plants, that T. evansi can suppress plant defenses on all plants except tobacco. This study suggests that the suppression of plant defenses may occur on host plants other than those to which herbivores are adapted.


Assuntos
Ácaros e Carrapatos/patogenicidade , Adaptação Fisiológica , Interações Hospedeiro-Parasita , Imunidade Vegetal , Ácaros e Carrapatos/genética , Ácaros e Carrapatos/metabolismo , Animais , Fabaceae/imunologia , Fabaceae/parasitologia , Especificidade de Hospedeiro , Características de História de Vida , Solanum tuberosum/imunologia , Solanum tuberosum/parasitologia , Nicotiana/imunologia , Nicotiana/parasitologia , Inibidores da Tripsina/metabolismo
15.
Exp Appl Acarol ; 74(2): 123-138, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29435771

RESUMO

Spider mites of the genus Tetranychidae are severe crop pests. In the Mediterranean a few species coexist, but they are difficult to identify based on morphological characters. Additionally, spider mites often harbour several species of endosymbiotic bacteria, which may affect the biology of their hosts. Here, we propose novel, cost-effective, multiplex diagnostic methods allowing a quick identification of spider-mite species as well as of the endosymbionts they carry. First, we developed, and successfully multiplexed in a single PCR, primers to identify Tetranychus urticae, T. evansi and T. ludeni, some of the most common tetranychids found in southwest Europe. Moreover, we demonstrated that this method allows detecting multiple species in a single pool, even at low frequencies (up to 1/100), and can be used on entire mites without DNA extraction. Second, we developed another set of primers to detect spider-mite endosymbionts, namely Wolbachia, Cardinium and Rickettsia in a multiplex PCR, along with a generalist spider-mite primer to control for potential failure of DNA amplification in each PCR. Overall, our method represents a simple, cost-effective and reliable method to identify spider-mite species and their symbionts in natural field populations, as well as to detect contaminations in laboratory rearings. This method may easily be extended to other species.


Assuntos
Bactérias/isolamento & purificação , Microbiota , Reação em Cadeia da Polimerase Multiplex/métodos , Simbiose , Tetranychidae/classificação , Animais , Fenômenos Fisiológicos Bacterianos , Feminino , Masculino , Reação em Cadeia da Polimerase Multiplex/economia , Portugal , Espanha , Tetranychidae/genética , Tetranychidae/microbiologia
16.
Proc Biol Sci ; 284(1856)2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28592670

RESUMO

The genome of the spider mite Tetranychus urticae, a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae, infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei, a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response.


Assuntos
Bactérias/patogenicidade , Tetranychidae/imunologia , Tetranychidae/microbiologia , Animais , Herbivoria , Transcriptoma
17.
Nature ; 479(7374): 487-92, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22113690

RESUMO

The spider mite Tetranychus urticae is a cosmopolitan agricultural pest with an extensive host plant range and an extreme record of pesticide resistance. Here we present the completely sequenced and annotated spider mite genome, representing the first complete chelicerate genome. At 90 megabases T. urticae has the smallest sequenced arthropod genome. Compared with other arthropods, the spider mite genome shows unique changes in the hormonal environment and organization of the Hox complex, and also reveals evolutionary innovation of silk production. We find strong signatures of polyphagy and detoxification in gene families associated with feeding on different hosts and in new gene families acquired by lateral gene transfer. Deep transcriptome analysis of mites feeding on different plants shows how this pest responds to a changing host environment. The T. urticae genome thus offers new insights into arthropod evolution and plant-herbivore interactions, and provides unique opportunities for developing novel plant protection strategies.


Assuntos
Adaptação Fisiológica/genética , Genoma/genética , Herbivoria/genética , Tetranychidae/genética , Tetranychidae/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Ecdisterona/análogos & derivados , Ecdisterona/genética , Evolução Molecular , Fibroínas/genética , Regulação da Expressão Gênica , Transferência Genética Horizontal/genética , Genes Homeobox/genética , Genômica , Herbivoria/fisiologia , Dados de Sequência Molecular , Muda/genética , Família Multigênica/genética , Nanoestruturas/química , Plantas/parasitologia , Seda/biossíntese , Seda/química , Transcriptoma/genética
18.
Proc Natl Acad Sci U S A ; 111(16): 5938-43, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711428

RESUMO

Host adaptation to one parasite may affect its response to others. However, the genetics of these direct and correlated responses remains poorly studied. The overlap between these responses is instrumental for the understanding of host evolution in multiparasite environments. We determined the genetic and phenotypic changes underlying adaptation of Drosophila melanogaster to Drosophila C virus (DCV). Within 20 generations, flies selected with DCV showed increased survival after DCV infection, but also after cricket paralysis virus (CrPV) and flock house virus (FHV) infection. Whole-genome sequencing identified two regions of significant differentiation among treatments, from which candidate genes were functionally tested with RNAi. Three genes were validated--pastrel, a known DCV-response gene, and two other loci, Ubc-E2H and CG8492. Knockdown of Ubc-E2H and pastrel also led to increased sensitivity to CrPV, whereas knockdown of CG8492 increased susceptibility to FHV infection. Therefore, Drosophila adaptation to DCV relies on few major genes, each with different cross-resistance properties, conferring host resistance to several parasites.


Assuntos
Adaptação Fisiológica/genética , Resistência à Doença/genética , Drosophila melanogaster/genética , Drosophila melanogaster/virologia , Genes de Insetos/genética , Interações Hospedeiro-Patógeno/imunologia , Vírus de Insetos/imunologia , Adaptação Fisiológica/imunologia , Animais , Resistência à Doença/imunologia , Drosophila melanogaster/imunologia , Técnicas de Silenciamento de Genes , Estudos de Associação Genética , Interações Hospedeiro-Patógeno/genética , Parasitos/imunologia , Interferência de RNA , Reprodutibilidade dos Testes , Seleção Genética , Especificidade da Espécie , Viroses/genética , Viroses/imunologia , Viroses/virologia
19.
Exp Appl Acarol ; 71(1): 1-13, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28040863

RESUMO

The choice of the partner an individual will mate with is expected to strongly impact its fitness. Hence, natural selection has favoured the evolution of cues to distinguish among mates that will provide different fitness benefits to the individual that is choosing. In species with first-male sperm precedence, this is particularly important for males, as mating with mated females will result in no offspring. In the spider mite Tetranychus urticae only the first mating is effective, except if the interval between first and second copulations is shorter than 24 h. In line with this, males prefer to mate with virgin over mated females. They do not, however, choose between females that have mated at different time intervals. Here, we tested which type of cues males use to distinguish between females with different mating status (virgin versus mated). To do so, we firstly confirmed that males prefer virgins over mated females and that they do not select females on the basis of their age or mating interval. Next, we tested whether contact and volatile compounds or chemical trails affected male discrimination between mated and virgin females, by systematically varying the exposure of males to these cues. We found that volatile compounds and chemical trails were sufficient to induce discrimination between virgin and mated females in males. Direct contact with females, however, does not seem to play a role in this discrimination. The composition of such chemical cues (trails and volatiles) remains to be identified.


Assuntos
Preferência de Acasalamento Animal , Tetranychidae/fisiologia , Animais , Sinais (Psicologia) , Feminino , Masculino , Atrativos Sexuais , Fatores de Tempo , Tato , Compostos Orgânicos Voláteis/química
20.
Mol Ecol ; 25(20): 4981-4983, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27714976

RESUMO

One of the major challenges in evolutionary biology is to unravel the genetic basis of adaptation. This issue has been gaining momentum in recent years with the accelerated development of novel genetic and genomic techniques and resources. In this issue of Molecular Ecology, Cogni et al. (2016) address the genetic basis of resistance to two viruses in Drosophila melanogaster using a panel of recombinant inbred lines with unprecedented resolution allowing detection of rare alleles and/or alleles of small effect. The study confirms the role of previously identified genes of major effect and adds novel regions with minor effect to the genetic basis of Drosophila resistance to the Drosophila C virus or the sigma virus. Additional analyses reveal the absence of cross-resistance and of epistasis between the various genomic regions. This detailed information on the genetic architecture of host resistance constitutes an important step towards the understanding of both the physiology of antiviral immunity and the evolution of host-parasite interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA