Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
BMC Genomics ; 23(1): 317, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35448948

RESUMO

BACKGROUND: Structural Variations (SVs) are genomic rearrangements derived from duplication, deletion, insertion, inversion, and translocation events. In the past, SVs detection was limited to cytological approaches, then to Next-Generation Sequencing (NGS) short reads and partitioned assemblies. Nowadays, technologies such as DNA long read sequencing and optical mapping have revolutionized the understanding of SVs in genomes, due to the enhancement of the power of SVs detection. This study aims to investigate performance of two techniques, 1) long-read sequencing obtained with the MinION device (Oxford Nanopore Technologies) and 2) optical mapping obtained with Saphyr device (Bionano Genomics) to detect and characterize SVs in the genomes of the two ecotypes of Arabidopsis thaliana, Columbia-0 (Col-0) and Landsberg erecta 1 (Ler-1). RESULTS: We described the SVs detected from the alignment of the best ONT assembly and DLE-1 optical maps of A. thaliana Ler-1 against the public reference genome Col-0 TAIR10.1. After filtering (SV > 1 kb), 1184 and 591 Ler-1 SVs were retained from ONT and Bionano technologies respectively. A total of 948 Ler-1 ONT SVs (80.1%) corresponded to 563 Bionano SVs (95.3%) leading to 563 common locations. The specific locations were scrutinized to assess improvement in SV detection by either technology. The ONT SVs were mostly detected near TE and gene features, and resistance genes seemed particularly impacted. CONCLUSIONS: Structural variations linked to ONT sequencing error were removed and false positives limited, with high quality Bionano SVs being conserved. When compared with the Col-0 TAIR10.1 reference genome, most of the detected SVs discovered by both technologies were found in the same locations. ONT assembly sequence leads to more specific SVs than Bionano one, the latter being more efficient to characterize large SVs. Even if both technologies are complementary approaches, ONT data appears to be more adapted to large scale populations studies, while Bionano performs better in improving assembly and describing specificity of a genome compared to a reference.


Assuntos
Nanoporos , Genoma , Variação Estrutural do Genoma , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
2.
PLoS Genet ; 12(5): e1006017, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27153332

RESUMO

Drechmeria coniospora is an obligate fungal pathogen that infects nematodes via the adhesion of specialized spores to the host cuticle. D. coniospora is frequently found associated with Caenorhabditis elegans in environmental samples. It is used in the study of the nematode's response to fungal infection. Full understanding of this bi-partite interaction requires knowledge of the pathogen's genome, analysis of its gene expression program and a capacity for genetic engineering. The acquisition of all three is reported here. A phylogenetic analysis placed D. coniospora close to the truffle parasite Tolypocladium ophioglossoides, and Hirsutella minnesotensis, another nematophagous fungus. Ascomycete nematopathogenicity is polyphyletic; D. coniospora represents a branch that has not been molecularly characterized. A detailed in silico functional analysis, comparing D. coniospora to 11 fungal species, revealed genes and gene families potentially involved in virulence and showed it to be a highly specialized pathogen. A targeted comparison with nematophagous fungi highlighted D. coniospora-specific genes and a core set of genes associated with nematode parasitism. A comparative gene expression analysis of samples from fungal spores and mycelia, and infected C. elegans, gave a molecular view of the different stages of the D. coniospora lifecycle. Transformation of D. coniospora allowed targeted gene knock-out and the production of fungus that expresses fluorescent reporter genes. It also permitted the initial characterisation of a potential fungal counter-defensive strategy, involving interference with a host antimicrobial mechanism. This high-quality annotated genome for D. coniospora gives insights into the evolution and virulence of nematode-destroying fungi. Coupled with genetic transformation, it opens the way for molecular dissection of D. coniospora physiology, and will allow both sides of the interaction between D. coniospora and C. elegans, as well as the evolutionary arms race that exists between pathogen and host, to be studied.


Assuntos
Caenorhabditis elegans/microbiologia , Micoses/microbiologia , Filogenia , Spiroplasma/genética , Animais , Ascomicetos/genética , Ascomicetos/patogenicidade , Caenorhabditis elegans/parasitologia , Hibridização Genômica Comparativa , Hypocreales/classificação , Hypocreales/genética , Micoses/parasitologia , Spiroplasma/classificação , Spiroplasma/patogenicidade , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Virulência/genética
3.
Plant J ; 76(1): 47-60, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23795942

RESUMO

In higher eukaryotes, centromeres are typically composed of megabase-sized arrays of satellite repeats that evolve rapidly and homogenize within a species' genome. Despite the importance of centromeres, our knowledge is limited to a few model species. We conducted a comprehensive analysis of common bean (Phaseolus vulgaris) centromeric satellite DNA using genomic data, fluorescence in situ hybridization (FISH), immunofluorescence and chromatin immunoprecipitation (ChIP). Two unrelated centromere-specific satellite repeats, CentPv1 and CentPv2, and the common bean centromere-specific histone H3 (PvCENH3) were identified. FISH showed that CentPv1 and CentPv2 are predominantly located at subsets of eight and three centromeres, respectively. Immunofluorescence- and ChIP-based assays demonstrated the functional significance of CentPv1 and CentPv2 at centromeres. Genomic analysis revealed several interesting features of CentPv1 and CentPv2: (i) CentPv1 is organized into an higher-order repeat structure, named Nazca, of 528 bp, whereas CentPv2 is composed of tandemly organized monomers; (ii) CentPv1 and CentPv2 have undergone chromosome-specific homogenization; and (iii) CentPv1 and CentPv2 are not likely to be commingled in the genome. These findings suggest that two distinct sets of centromere sequences have evolved independently within the common bean genome, and provide insight into centromere satellite evolution.


Assuntos
Centrômero , Evolução Molecular , Fabaceae , Sequência de Bases , Centrômero/genética , Centrômero/metabolismo , DNA Complementar/química , DNA Complementar/genética , DNA de Plantas/química , DNA de Plantas/genética , Fabaceae/genética , Fabaceae/metabolismo , Histonas/genética , Hibridização in Situ Fluorescente , Repetições de Microssatélites , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade da Espécie
4.
BMC Genomics ; 15: 704, 2014 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-25149648

RESUMO

BACKGROUND: Spodoptera frugiperda (Noctuidae) is a major agricultural pest throughout the American continent. The highly polyphagous larvae are frequently devastating crops of importance such as corn, sorghum, cotton and grass. In addition, the Sf9 cell line, widely used in biochemistry for in vitro protein production, is derived from S. frugiperda tissues. Many research groups are using S. frugiperda as a model organism to investigate questions such as plant adaptation, pest behavior or resistance to pesticides. RESULTS: In this study, we constructed a reference transcriptome assembly (Sf_TR2012b) of RNA sequences obtained from more than 35 S. frugiperda developmental time-points and tissue samples. We assessed the quality of this reference transcriptome by annotating a ubiquitous gene family--ribosomal proteins--as well as gene families that have a more constrained spatio-temporal expression and are involved in development, immunity and olfaction. We also provide a time-course of expression that we used to characterize the transcriptional regulation of the gene families studied. CONCLUSION: We conclude that the Sf_TR2012b transcriptome is a valid reference transcriptome. While its reliability decreases for the detection and annotation of genes under strong transcriptional constraint we still recover a fair percentage of tissue-specific transcripts. That allowed us to explore the spatial and temporal expression of genes and to observe that some olfactory receptors are expressed in antennae and palps but also in other non related tissues such as fat bodies. Similarly, we observed an interesting interplay of gene families involved in immunity between fat bodies and antennae.


Assuntos
Perfilação da Expressão Gênica/normas , Spodoptera/genética , Transcriptoma , Animais , Genes de Insetos , Imunidade Inata/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Anotação de Sequência Molecular , Padrões de Referência , Olfato/genética , Spodoptera/metabolismo
5.
Proc Natl Acad Sci U S A ; 108(46): 18737-42, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22042872

RESUMO

The Q gene encodes an AP2-like transcription factor that played an important role in domestication of polyploid wheat. The chromosome 5A Q alleles (5AQ and 5Aq) have been well studied, but much less is known about the q alleles on wheat homoeologous chromosomes 5B (5Bq) and 5D (5Dq). We investigated the organization, evolution, and function of the Q/q homoeoalleles in hexaploid wheat (Triticum aestivum L.). Q/q gene sequences are highly conserved within and among the A, B, and D genomes of hexaploid wheat, the A and B genomes of tetraploid wheat, and the A, S, and D genomes of the diploid progenitors, but the intergenic regions of the Q/q locus are highly divergent among homoeologous genomes. Duplication of the q gene 5.8 Mya was likely followed by selective loss of one of the copies from the A genome progenitor and the other copy from the B, D, and S genomes. A recent V(329)-to-I mutation in the A lineage is correlated with the Q phenotype. The 5Bq homoeoalleles became a pseudogene after allotetraploidization. Expression analysis indicated that the homoeoalleles are coregulated in a complex manner. Combined phenotypic and expression analysis indicated that, whereas 5AQ plays a major role in conferring domestication-related traits, 5Dq contributes directly and 5Bq indirectly to suppression of the speltoid phenotype. The evolution of the Q/q loci in polyploid wheat resulted in the hyperfunctionalization of 5AQ, pseudogenization of 5Bq, and subfunctionalization of 5Dq, all contributing to the domestication traits.


Assuntos
Cromossomos/genética , Evolução Molecular , Genoma de Planta , Poliploidia , Triticum/genética , Regiões 3' não Traduzidas , Alelos , Éxons , Duplicação Gênica , Íntrons , Modelos Genéticos , Mutação , Fenótipo , Ploidias , RNA Mensageiro/metabolismo
6.
Plant Cell ; 22(6): 1686-701, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20581307

RESUMO

To improve our understanding of the organization and evolution of the wheat (Triticum aestivum) genome, we sequenced and annotated 13-Mb contigs (18.2 Mb) originating from different regions of its largest chromosome, 3B (1 Gb), and produced a 2x chromosome survey by shotgun Illumina/Solexa sequencing. All regions carried genes irrespective of their chromosomal location. However, gene distribution was not random, with 75% of them clustered into small islands containing three genes on average. A twofold increase of gene density was observed toward the telomeres likely due to high tandem and interchromosomal duplication events. A total of 3222 transposable elements were identified, including 800 new families. Most of them are complete but showed a highly nested structure spread over distances as large as 200 kb. A succession of amplification waves involving different transposable element families led to contrasted sequence compositions between the proximal and distal regions. Finally, with an estimate of 50,000 genes per diploid genome, our data suggest that wheat may have a higher gene number than other cereals. Indeed, comparisons with rice (Oryza sativa) and Brachypodium revealed that a high number of additional noncollinear genes are interspersed within a highly conserved ancestral grass gene backbone, supporting the idea of an accelerated evolution in the Triticeae lineages.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Genoma de Planta , Triticum/genética , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Mapeamento de Sequências Contíguas , DNA de Plantas/genética , Duplicação Gênica , Genes de Plantas , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência de DNA , Telômero/genética
7.
Nat Microbiol ; 8(7): 1339-1347, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277532

RESUMO

Conjugative plasmids are self-transmissible mobile genetic elements that transfer DNA between host cells via type IV secretion systems (T4SS). While T4SS-mediated conjugation has been well-studied in bacteria, information is sparse in Archaea and known representatives exist only in the Sulfolobales order of Crenarchaeota. Here we present the first self-transmissible plasmid identified in a Euryarchaeon, Thermococcus sp. 33-3. The 103 kbp plasmid, pT33-3, is seen in CRISPR spacers throughout the Thermococcales order. We demonstrate that pT33-3 is a bona fide conjugative plasmid that requires cell-to-cell contact and is dependent on canonical, plasmid-encoded T4SS-like genes. Under laboratory conditions, pT33-3 transfers to various Thermococcales and transconjugants propagate at 100 °C. Using pT33-3, we developed a genetic toolkit that allows modification of phylogenetically diverse Archaeal genomes. We demonstrate pT33-3-mediated plasmid mobilization and subsequent targeted genome modification in previously untransformable Thermococcales species, and extend this process to interphylum transfer to a Crenarchaeon.


Assuntos
Archaea , DNA , Archaea/genética , Plasmídeos/genética , DNA/genética , Bactérias/genética , Genoma Arqueal
8.
J Bacteriol ; 193(18): 5035-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21868803

RESUMO

Hyphomicrobium sp. strain MC1 is an aerobic methylotroph originally isolated from industrial sewage. This prosthecate bacterium was the first strain reported to grow with chloromethane as the sole carbon and energy source. Its genome, consisting of a single 4.76-Mb chromosome, is the first for a chloromethane-degrading bacterium to be formally reported.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Hyphomicrobium/genética , Análise de Sequência de DNA , Aerobiose , Carbono/metabolismo , Hyphomicrobium/isolamento & purificação , Hyphomicrobium/metabolismo , Hyphomicrobium/fisiologia , Resíduos Industriais , Cloreto de Metila/metabolismo , Dados de Sequência Molecular , Esgotos/microbiologia
9.
New Phytol ; 187(4): 941-956, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20561214

RESUMO

*In plants, the evolution of specific resistance is poorly understood. Pseudomonas syringae effectors AvrB and AvrRpm1 are recognized by phylogenetically distinct resistance (R) proteins in Arabidopsis thaliana (Brassicaceae) and soybean (Glycine max, Fabaceae). In soybean, these resistances are encoded by two tightly linked R genes, Rpg1-b and Rpg1-r. To study the evolution of these specific resistances, we investigated AvrB- and AvrRpm1-induced responses in common bean (Phaseolus vulgaris, Fabaceae). *Common bean genotypes of various geographical origins were inoculated with P. syringae strains expressing AvrB or AvrRpm1. A common bean recombinant inbred line (RIL) population was used to map R genes to AvrRpm1. *No common bean genotypes recognized AvrB. By contrast, multiple genotypes responded to AvrRpm1, and two independent R genes conferring AvrRpm1-specific resistance were mapped to the ends of linkage group B11 (Rpsar-1, for resistance to Pseudomonas syringae effector AvrRpm1 number 1) and B8 (Rpsar-2). Rpsar-1 is located in a region syntenic with the soybean Rpg1 cluster. However, mapping of specific Rpg1 homologous genes suggests that AvrRpm1 recognition evolved independently in common bean and soybean. *The conservation of the genomic position of AvrRpm1-specific genes between soybean and common bean suggests a model whereby specific clusters of R genes are predisposed to evolve recognition of the same effector molecules.


Assuntos
Evolução Biológica , Genes de Plantas , Interações Hospedeiro-Patógeno/genética , Phaseolus/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Pseudomonas syringae/patogenicidade , Arabidopsis/genética , Proteínas de Bactérias/imunologia , Mapeamento Cromossômico , Genes Bacterianos , Genótipo , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Glycine max/genética
10.
BMC Biol ; 7: 43, 2009 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-19627570

RESUMO

BACKGROUND: The ParaHox gene cluster is the evolutionary sister to the Hox cluster. Whilst the role of the Hox cluster in patterning the anterior-posterior axis of bilaterian animals is well established, and the organisation of vertebrate Hox clusters is intimately linked to gene regulation, much less is known about the more recently discovered ParaHox cluster. ParaHox gene clustering, and its relationship to expression, has only been described in deuterostomes. Conventional protostome models (Drosophila melanogaster and Caenorhabditis elegans) are secondarily derived with respect to ParaHox genes, suffering gene loss and cluster break-up. RESULTS: We provide the first evidence for ParaHox gene clustering from a less-derived protostome animal, the annelid Platynereis dumerilii. Clustering of these genes is thus not a sole preserve of the deuterostome lineage within Bilateria. This protostome ParaHox cluster is not entirely intact however, with Pdu-Cdx being on the opposite end of the same chromosome arm from Pdu-Gsx and Pdu-Xlox. From the genomic sequence around the P. dumerilii ParaHox genes the neighbouring genes are identified, compared with other taxa, and the ancestral arrangement deduced. CONCLUSION: We relate the organisation of the ParaHox genes to their expression, and from comparisons with other taxa hypothesise that a relatively complex pattern of ParaHox gene expression existed in the protostome-deuterostome ancestor, which was secondarily simplified along several invertebrate lineages. Detailed comparisons of the gene content around the ParaHox genes enables the reconstruction of the genome surrounding the ParaHox cluster of the protostome-deuterostome ancestor, which existed over 550 million years ago.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio/genética , Larva/genética , Família Multigênica , Poliquetos/genética , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Mapeamento de Sequências Contíguas , Expressão Gênica , Proteínas de Homeodomínio/química , Hibridização in Situ Fluorescente , Larva/ultraestrutura , Dados de Sequência Molecular , Poliquetos/crescimento & desenvolvimento , Alinhamento de Sequência , Sintenia
11.
BMC Genomics ; 9: 555, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19032732

RESUMO

BACKGROUND: Several studies suggested that the diploid ancestor of the B genome of tetraploid and hexaploid wheat species belongs to the Sitopsis section, having Aegilops speltoides (SS, 2n = 14) as the closest identified relative. However molecular relationships based on genomic sequence comparison, including both coding and non-coding DNA, have never been investigated. In an attempt to clarify these relationships, we compared, in this study, sequences of the Storage Protein Activator (SPA) locus region of the S genome of Ae. speltoides (2n = 14) to that of the A, B and D genomes co-resident in the hexaploid wheat species (Triticum aestivum, AABBDD, 2n = 42). RESULTS: Four BAC clones, spanning the SPA locus of respectively the A, B, D and S genomes, were isolated and sequenced. Orthologous genomic regions were identified as delimited by shared non-transposable elements and non-coding sequences surrounding the SPA gene and correspond to 35,268, 22,739, 43,397 and 53,919 bp for the A, B, D and S genomes, respectively. Sequence length discrepancies within and outside the SPA orthologous regions are the result of non-shared transposable elements (TE) insertions, all of which inserted after the progenitors of the four genomes divergence. CONCLUSION: On the basis of conserved sequence length as well as identity of the shared non-TE regions and the SPA coding sequence, Ae speltoides appears to be more evolutionary related to the B genome of T. aestivum than the A and D genomes. However, the differential insertions of TEs, none of which are conserved between the two genomes led to the conclusion that the S genome of Ae. speltoides has diverged very early from the progenitor of the B genome which remains to be identified.


Assuntos
Evolução Molecular , Genoma de Planta/genética , Filogenia , Poaceae/genética , Triticum/genética , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Elementos de DNA Transponíveis , Diploide , Proteínas de Plantas , Análise de Sequência de DNA
12.
Front Microbiol ; 9: 2740, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524390

RESUMO

About half of seaweed biomass is composed of polysaccharides. Most of these complex polymers have a marked polyanionic character. For instance, the red algal cell wall is mainly composed of sulfated galactans, agars and carrageenans, while brown algae contain alginate and fucose-containing sulfated polysaccharides (FCSP) as cell wall polysaccharides. Some marine heterotrophic bacteria have developed abilities to grow on such macroalgal polysaccharides. This is the case of Pseudoalteromonas carrageenovora 9T (ATCC 43555T), a marine gammaproteobacterium isolated in 1955 and which was an early model organism for studying carrageenan catabolism. We present here the genomic analysis of P. carrageenovora. Its genome is composed of two chromosomes and of a large plasmid encompassing 109 protein-coding genes. P. carrageenovora possesses a diverse repertoire of carbohydrate-active enzymes (CAZymes), notably specific for the degradation of macroalgal polysaccharides (laminarin, alginate, FCSP, carrageenans). We confirm these predicted capacities by screening the growth of P. carrageenovora with a large collection of carbohydrates. Most of these CAZyme genes constitute clusters located either in the large chromosome or in the small one. Unexpectedly, all the carrageenan catabolism-related genes are found in the plasmid, suggesting that P. carrageenovora acquired its hallmark capacity for carrageenan degradation by horizontal gene transfer (HGT). Whereas P. carrageenovora is able to use lambda-carrageenan as a sole carbon source, genomic and physiological analyses demonstrate that its catabolic pathway for kappa- and iota-carrageenan is incomplete. This is due to the absence of the recently discovered 3,6-anhydro-D-galactosidase genes (GH127 and GH129 families). A genomic comparison with 52 Pseudoalteromonas strains confirms that carrageenan catabolism has been recently acquired only in a few species. Even though the loci for cellulose biosynthesis and alginate utilization are located on the chromosomes, they were also horizontally acquired. However, these HGTs occurred earlier in the evolution of the Pseudoalteromonas genus, the cellulose- and alginate-related loci being essentially present in one large, late-diverging clade (LDC). Altogether, the capacities to degrade cell wall polysaccharides from macroalgae are not ancestral in the Pseudoalteromonas genus. Such catabolism in P. carrageenovora resulted from a succession of HGTs, likely allowing an adaptation to the life on the macroalgal surface.

13.
Front Plant Sci ; 9: 1185, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154814

RESUMO

Subtelomeres of most eukaryotes contain fast-evolving genes usually involved in adaptive processes. In common bean (Phaseolus vulgaris), the Co-2 anthracnose resistance (R) locus corresponds to a cluster of nucleotide-binding-site leucine-rich-repeat (NL) encoding sequences, the prevalent class of plant R genes. To study the recent evolution of this R gene cluster, we used a combination of sequence, genetic and cytogenetic comparative analyses between common bean genotypes from two distinct gene pools (Andean and Mesoamerican) that diverged 0.165 million years ago. Co-2 is a large subtelomeric cluster on chromosome 11 comprising from 32 (Mesoamerican) to 52 (Andean) NL sequences embedded within khipu satellite repeats. Since the recent split between Andean and Mesoamerican gene pools, the Co-2 cluster has experienced numerous gene-pool specific NL losses, leading to distinct NL repertoires. The high proportion of solo-LTR retrotransposons indicates that the Co-2 cluster is located in a hot spot of unequal intra-strand homologous recombination. Furthermore, we observe large segmental duplications involving both Non-Homologous End Joining and Homologous Recombination double-strand break repair pathways. Finally, the identification of a Mesoamerican-specific subtelomeric sequence reveals frequent interchromosomal recombinations between common bean subtelomeres. Altogether, our results highlight that common bean subtelomeres are hot spots of recombination and favor the rapid evolution of R genes. We propose that chromosome ends could act as R gene incubators in many plant genomes.

14.
Genome Announc ; 5(44)2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29097459

RESUMO

Piezophilic Desulfovibrio profundus strain 500-1 was isolated in the Japan Sea from a sediment layer at 500-m depth under a water column of 1,000 m. Here, we report the genome sequence of this strain, which includes a 4,168,905-bp circular chromosome and two plasmids of 42,836 bp and 6,167 bp.

15.
Front Microbiol ; 8: 1542, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28861057

RESUMO

Tenacibaculum maritimum is a devastating bacterial pathogen of wild and farmed marine fish with a broad host range and a worldwide distribution. We report here the complete genome sequence of the T. maritimum type strain NCIMB 2154T. The genome consists of a 3,435,971-base pair circular chromosome with 2,866 predicted protein-coding genes. Genes encoding the biosynthesis of exopolysaccharides, the type IX secretion system, iron uptake systems, adhesins, hemolysins, proteases, and glycoside hydrolases were identified. They are likely involved in the virulence process including immune escape, invasion, colonization, destruction of host tissues, and nutrient scavenging. Among the predicted virulence factors, type IX secretion-mediated and cell-surface exposed proteins were identified including an atypical sialidase, a sphingomyelinase and a chondroitin AC lyase which activities were demonstrated in vitro.

16.
Front Microbiol ; 8: 1009, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28659871

RESUMO

The iron-oxidizing species Acidithiobacillus ferrivorans is one of few acidophiles able to oxidize ferrous iron and reduced inorganic sulfur compounds at low temperatures (<10°C). To complete the genome of At. ferrivorans strain CF27, new sequences were generated, and an update assembly and functional annotation were undertaken, followed by a comparative analysis with other Acidithiobacillus species whose genomes are publically available. The At. ferrivorans CF27 genome comprises a 3,409,655 bp chromosome and a 46,453 bp plasmid. At. ferrivorans CF27 possesses genes allowing its adaptation to cold, metal(loid)-rich environments, as well as others that enable it to sense environmental changes, allowing At. ferrivorans CF27 to escape hostile conditions and to move toward favorable locations. Interestingly, the genome of At. ferrivorans CF27 exhibits a large number of genomic islands (mostly containing genes of unknown function), suggesting that a large number of genes has been acquired by horizontal gene transfer over time. Furthermore, several genes specific to At. ferrivorans CF27 have been identified that could be responsible for the phenotypic differences of this strain compared to other Acidithiobacillus species. Most genes located inside At. ferrivorans CF27-specific gene clusters which have been analyzed were expressed by both ferrous iron-grown and sulfur-attached cells, indicating that they are not pseudogenes and may play a role in both situations. Analysis of the taxonomic composition of genomes of the Acidithiobacillia infers that they are chimeric in nature, supporting the premise that they belong to a particular taxonomic class, distinct to other proteobacterial subgroups.

17.
Genome Announc ; 4(2)2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27081135

RESUMO

Mycoplasma mycoidessubsp.mycoidesis the etiologic agent of contagious bovine pleuropneumonia. We report here the complete genome sequence of the strain T1/44, which is widely used as a live vaccine in Africa.

18.
PLoS One ; 10(9): e0139011, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26422469

RESUMO

Acid mine drainage (AMD) is a highly toxic environment for most living organisms due to the presence of many lethal elements including arsenic (As). Thiomonas (Tm.) bacteria are found ubiquitously in AMD and can withstand these extreme conditions, in part because they are able to oxidize arsenite. In order to further improve our knowledge concerning the adaptive capacities of these bacteria, we sequenced and assembled the genome of six isolates derived from the Carnoulès AMD, and compared them to the genomes of Tm. arsenitoxydans 3As (isolated from the same site) and Tm. intermedia K12 (isolated from a sewage pipe). A detailed analysis of the Tm. sp. CB2 genome revealed various rearrangements had occurred in comparison to what was observed in 3As and K12 and over 20 genomic islands (GEIs) were found in each of these three genomes. We performed a detailed comparison of the two arsenic-related islands found in CB2, carrying the genes required for arsenite oxidation and As resistance, with those found in K12, 3As, and five other Thiomonas strains also isolated from Carnoulès (CB1, CB3, CB6, ACO3 and ACO7). Our results suggest that these arsenic-related islands have evolved differentially in these closely related Thiomonas strains, leading to divergent capacities to survive in As rich environments.


Assuntos
Arsênio , Burkholderiaceae/genética , Genoma Bacteriano , Microbiologia da Água , Burkholderiaceae/isolamento & purificação
19.
Insect Biochem Mol Biol ; 43(1): 54-64, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23142192

RESUMO

The proteins of the X-tox family have imperfectly conserved tandem repeats of several defensin-like motifs known as cysteine-stabilized αß (CS-αß) motifs. These immune-related proteins are inducible and expressed principally in hemocytes, but they have lost the antimicrobial properties of the ancestral defensins from which they evolved. We compared x-tox gene structure and expression in three lepidopteran species (Spodoptera frugiperda, Helicoverpa armigera and Bombyx mori). Synteny and phylogenetic analyses showed that the x-tox exons encoding CS-αß motifs were phylogenetically closely related to defensin genes mapping to chromosomal positions close to the x-tox genes. We were able to define two groups of paralogous x-tox exons (three in Noctuids) that each followed the expected species tree. These results suggest that the ancestor of the three species already possessed an x-tox gene with at least two proto-domains, and an additional duplication/fusion should have occurred in the ancestor of the two noctuid species. An expansion of the number of exons subsequently occurred in each lineage. Alternatively, the proto x-tox gene possessed more copy and each group of x-tox domains might undergo concerted evolution through gene conversion. Accelerated protein evolution was detected in x-tox domains when compared to related defensins, concomitantly to multiplication of exons and/or the possible activation of concerted evolution. The x-tox genes of the three species have similar structural organizations, with repeat motifs composed of CS-αß-encoding exons flanked by introns in phase 1. Diverse mechanisms underlie this organization: (i) the acquisition of new repeat motifs, (ii) the duplication of preexisting repeat motifs and (iii) the duplication of modules. A comparison of gDNA and cDNA structures showed that alternative splicing results in the production of multiple X-tox protein isoforms from the x-tox genes. Differences in the number and sequence of CS-αß motifs in these isoforms were found between species, but also between individuals of the same species. Thus, our analysis of the genetic organization and expression of x-tox genes in three lepidopteran species suggests a rapid evolution of the organization of these genes.


Assuntos
Processamento Alternativo , Bombyx/genética , Evolução Molecular , Proteínas de Insetos/genética , Spodoptera/genética , Animais , Sequência de Bases , Bombyx/imunologia , Defensinas/genética , Componentes do Gene , Expressão Gênica , Genoma de Inseto , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Isoformas de Proteínas , Spodoptera/imunologia , Sintenia
20.
PLoS One ; 5(10): e13332, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20967201

RESUMO

Hedgehog (Hh) genes play major roles in animal development and studies of their evolution, expression and function point to major differences among chordates. Here we focused on Hh genes in lampreys in order to characterize the evolution of Hh signalling at the emergence of vertebrates. Screening of a cosmid library of the river lamprey Lampetra fluviatilis and searching the preliminary genome assembly of the sea lamprey Petromyzon marinus indicate that lampreys have two Hh genes, named Hha and Hhb. Phylogenetic analyses suggest that Hha and Hhb are lamprey-specific paralogs closely related to Sonic/Indian Hh genes. Expression analysis indicates that Hha and Hhb are expressed in a Sonic Hh-like pattern. The two transcripts are expressed in largely overlapping but not identical domains in the lamprey embryonic brain, including a newly-described expression domain in the nasohypophyseal placode. Global alignments of genomic sequences and local alignment with known gnathostome regulatory motifs show that lamprey Hhs share conserved non-coding elements (CNE) with gnathostome Hhs albeit with sequences that have significantly diverged and dispersed. Functional assays using zebrafish embryos demonstrate gnathostome-like midline enhancer activity for CNEs contained in intron2. We conclude that lamprey Hh genes are gnathostome Shh-like in terms of expression and regulation. In addition, they show some lamprey-specific features, including duplication and structural (but not functional) changes in the intronic/regulatory sequences.


Assuntos
Proteínas Hedgehog/genética , Lampreias/genética , Animais , Sequência de Bases , Primers do DNA , DNA Complementar , Elementos Facilitadores Genéticos , Hibridização In Situ , Filogenia , Reação em Cadeia da Polimerase , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA