Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nucleic Acids Res ; 52(15): 9317-9327, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39041420

RESUMO

An increasing number of human disorders are attributed to genomic expansions of short tandem repeats (STRs). Secondary DNA structures formed by STRs are believed to play an important role in expansion, while the presence of nucleotide interruptions within the pure repeat sequence is known to delay the onset and progression of disease. We have used two single-molecule fluorescence techniques to analyse the structure and dynamics of DNA three-way junctions (3WJs) containing CAG repeat hairpin slipouts, with and without a single CAA interrupt. For a 3WJ with a (CAG)10 slipout, the CAA interrupt is preferentially located in the hairpin loop, and the branch migration dynamics are 4-fold slower than for the 3WJ with a pure (CAG)10, and 3-fold slower than a 3WJ with a pure (CAG)40 repeat. The (CAG)11 3WJ with CAA interrupt adopts a conformation that places the interrupt in or near the hairpin loop, with similar dynamics to the pure (CAG)10 and (CAG)11 3WJs. We have shown that changing a single nucleotide (G to A) in a pure repeat can have a large impact on 3WJ structure and dynamics, which may be important for the protective role of interrupts in repeat expansion diseases.


Assuntos
DNA , Conformação de Ácido Nucleico , Repetições de Trinucleotídeos , DNA/química , DNA/genética , Humanos , Repetições de Microssatélites/genética , Imagem Individual de Molécula/métodos
2.
Phys Chem Chem Phys ; 25(30): 20218-20224, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37475592

RESUMO

Fluorescent nucleobase analogues (FBAs) are established tools for studying oligonucleotide structure, dynamics and interactions, and have recently also emerged as an attractive option for labeling RNA-based therapeutics. A recognized drawback of FBAs, however, is that they typically require excitation in the UV region, which for imaging in biological samples may have disadvantages related to phototoxicity, tissue penetration, and out-of-focus photobleaching. Multiphoton excitation has the potential to alleviate these issues and therefore, in this work, we characterize the multiphoton absorption properties and detectability of the highly fluorescent quadracyclic adenine analogue 2CNqA as a ribonucleotide monomer as well as incorporated, at one or two positions, into a 16mer antisense oligonucleotide (ASO). We found that 2CNqA has a two-photon absorption cross section that, among FBAs, is exceptionally high, with values of σ2PA(700 nm) = 5.8 GM, 6.8 GM, and 13 GM for the monomer, single-, and double-labelled oligonucleotide, respectively. Using fluorescence correlation spectroscopy, we show that the 2CNqA has a high 2P brightness as the monomer and when incorporated into the ASO, comparing favorably to other FBAs. We furthermore demonstrate the usefulness of the 2P imaging mode for improving detectability of 2CNqA-labelled ASOs in live cells.


Assuntos
Corantes Fluorescentes , Oligonucleotídeos , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos , Nucleosídeos de Purina , Adenina/química
3.
Chemistry ; 26(22): 4980-4987, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-31999015

RESUMO

The metallation of nucleic acids is key to wide-ranging applications, from anticancer medicine to nanomaterials, yet there is a lack of understanding of the molecular-level effects of metallation. Here, we apply single-molecule fluorescence methods to study the reaction of an organo-osmium anticancer complex and DNA. Individual metallated DNA hairpins are characterised using Förster resonance energy transfer (FRET). Although ensemble measurements suggest a simple two-state system, single-molecule experiments reveal an underlying heterogeneity in the oligonucleotide dynamics, attributable to different degrees of metallation of the GC-rich hairpin stem. Metallated hairpins display fast two-state transitions with a two-fold increase in the opening rate to ≈2 s-1 , relative to the unmodified hairpin, and relatively static conformations with long-lived open (and closed) states of 5 to ≥50 s. These studies show that a single-molecule approach can provide new insight into metallation-induced changes in DNA structure and dynamics.


Assuntos
Antineoplásicos/química , DNA/química , Antineoplásicos/farmacologia , DNA/metabolismo , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Nanotecnologia , Conformação de Ácido Nucleico
4.
Nucleic Acids Res ; 46(21): 11618-11626, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30277520

RESUMO

From gene expression to nanotechnology, understanding and controlling DNA requires a detailed knowledge of its higher order structure and dynamics. Here we take advantage of the environment-sensitive photoisomerization of cyanine dyes to probe local and global changes in DNA structure. We report that a covalently attached Cy3 dye undergoes strong enhancement of fluorescence intensity and lifetime when stacked in a nick, gap or overhang region in duplex DNA. This is used to probe hybridization dynamics of a DNA hairpin down to the single-molecule level. We also show that varying the position of a single abasic site up to 20 base pairs away modulates the dye-DNA interaction, indicative of through-backbone allosteric interactions. The phenomenon of stacking-induced fluorescence increase (SIFI) should find widespread use in the study of the structure, dynamics and reactivity of nucleic acids.


Assuntos
Carbocianinas/química , DNA/química , Regulação Alostérica , Fluorescência , Corantes Fluorescentes/química , Conformação de Ácido Nucleico , Imagem Individual de Molécula , Espectrometria de Fluorescência
5.
Chemphyschem ; 19(5): 551-555, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29316151

RESUMO

Non-enzymatic DNA strand displacement is an important mechanism in dynamic DNA nanotechnology. Here, we show that the large parameter space that is accessible by single-molecule FRET is ideal for the simultaneous monitoring of multiple reactants and products of DNA strand exchange reactions. We monitored the strand displacement from double-stranded DNA (dsDNA) by single-stranded DNA (ssDNA) at 37 °C; the data were modelled as a second-order reaction approaching equilibrium, with a rate constant of 10 m-1 s-1 . We also followed the displacement from a DNA three-way junction (3WJ) by ssDNA. The presence of three internal mismatched bases in the middle of the invading strand did not prevent displacement from the 3WJ, but reduced the second-order rate constant by about 50 %. We attribute strand exchange in the dsDNA and 3WJ to a zero-toehold pathway from the blunt-ended duplex arms. The single-molecule approach demonstrated here will be useful for studying complex DNA networks.


Assuntos
DNA de Cadeia Simples/química , Pareamento Incorreto de Bases , Pareamento de Bases , DNA de Cadeia Simples/genética , Transferência Ressonante de Energia de Fluorescência , Cinética , Nanoestruturas/química
6.
Phys Chem Chem Phys ; 20(45): 28487-28498, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30412214

RESUMO

Fluorescent nucleobase analogues (FBAs) have many desirable features in comparison to extrinsic fluorescent labels, but they are yet to find application in ultrasensitive detection. Many of the disadvantages of FBAs arise from their short excitation wavelengths (often in the ultraviolet), making two-photon excitation a potentially attractive approach. Pentacyclic adenine (pA) is a recently developed FBA that has an exceptionally high two-photon brightness. We have studied the two-photon-excited fluorescence properties of pA and how they are affected by incorporation in DNA. We find that pA is more photostable under two-photon excitation than via resonant absorption. When incorporated in an oligonucleotide, pA has a high two-photon cross section and emission quantum yield, varying with sequence context, resulting in the highest reported brightness for such a probe. The use of a two-photon microscope with ultrafast excitation and pulse shaping has allowed the detection of pA-containing oligonucleotides in solution with a limit of detection of ∼5 molecules, demonstrating that practical single-molecule detection of FBAs is now within reach.

7.
Biochemistry ; 56(37): 4985-4991, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28820590

RESUMO

DNA three-way junctions (3WJs) are branched structures that serve as important biological intermediates and as components in DNA nanostructures. We recently derived the global structure of a fully complementary 3WJ and found that it contained unpaired bases at the branchpoint, which is consistent with previous observations of branch flexibility and branchpoint reactivity. By combining high-resolution single-molecule Förster resonance energy transfer, molecular modeling, time-resolved ensemble fluorescence spectroscopy, and the first 19F nuclear magnetic resonance observations of fully complementary 3WJs, we now show that the 3WJ structure can adopt multiple distinct conformations depending upon the sequence at the branchpoint. A 3WJ with a GC-rich branchpoint adopts an open conformation with unpaired bases at the branch and at least one additional conformation with an increased number of base interactions at the branchpoint. This structural diversity has implications for branch interactions and processing in vivo and for technological applications.


Assuntos
DNA Complementar/química , DNA/química , Modelos Moleculares , Pareamento de Bases , DNA/metabolismo , DNA Complementar/metabolismo , Transferência Ressonante de Energia de Fluorescência , Sequência Rica em GC , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Imagem Individual de Molécula , Espectrometria de Fluorescência
8.
Chemphyschem ; 17(21): 3442-3446, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27538128

RESUMO

The first single-molecule fluorescence detection of a structurally-defined synthetic carbohydrate is reported: a heparan sulfate (HS) disaccharide fragment labeled with Alexa488. Single molecules have been measured whilst freely diffusing in solution and controlled encapsulation in surface-tethered lipid vesicles has allowed extended observations of carbohydrate molecules down to the single-molecule level. The diverse and dynamic nature of HS-protein interactions means that new tools to investigate pure HS fragments at the molecular level would significantly enhance our understanding of HS. This work is a proof-of-principle demonstration of the feasibility of single-molecule studies of synthetic carbohydrates which offers a new approach to the study of pure glycosaminoglycan (GAG) fragments.


Assuntos
Dissacarídeos/síntese química , Fluorescência , Heparitina Sulfato/síntese química , Configuração de Carboidratos , Dissacarídeos/química , Heparitina Sulfato/química , Espectrometria de Fluorescência
9.
J Am Chem Soc ; 137(51): 16020-3, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26654490

RESUMO

It is clear that a crowded environment influences the structure, dynamics, and interactions of biological molecules, but the complexity of this phenomenon demands the development of new experimental and theoretical approaches. Here we use two complementary single-molecule FRET techniques to show that the kinetics of DNA base pairing and unpairing, which are fundamental to both the biological role of DNA and its technological applications, are strongly modulated by a crowded environment. We directly observed single DNA hairpins, which are excellent model systems for studying hybridization, either freely diffusing in solution or immobilized on a surface under crowding conditions. The hairpins followed two-state folding dynamics with a closing rate increasing by 4-fold and the opening rate decreasing 2-fold, for only modest concentrations of crowder [10% (w/w) polyethylene glycol (PEG)]. These experiments serve both to unambiguously highlight the impact of a crowded environment on a fundamental biological process, DNA base pairing, and to illustrate the benefits of single-molecule approaches to probing the structure and dynamics of complex biomolecular systems.


Assuntos
DNA/química , Hibridização de Ácido Nucleico
10.
Chemphyschem ; 15(5): 867-71, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24604669

RESUMO

Five isomorphic fluorescent uridine mimics have been subjected to two-photon (2P) excitation analysis to investigate their potential applicability as non-perturbing probes for the single-molecule detection of nucleic acids. We find that small structural differences can cause major changes in the 2P excitation probability, with the 2P cross sections varying by over one order of magnitude. Two of the probes, both thiophene-modified uridine analogs, have the highest 2P cross sections (3.8 GM and 7.6 GM) reported for nucleobase analogs, using a conventional Ti:sapphire laser for excitation at 690 nm; they also have the lowest emission quantum yields. In contrast, the analogs with the highest reported quantum yields have the lowest 2P cross sections. The structure-photophysical property relationship presented here is a first step towards the rational design of emissive nucleobase analogs with controlled 2P characteristics. The results demonstrate the potential for major improvements through judicious structural modifications.


Assuntos
Corantes Fluorescentes/química , Nucleosídeos/química , Ácidos Nucleicos/análise , Fótons , Teoria Quântica , Ribonucleosídeos/química , Espectrofotometria , Tiofenos/química , Uridina/análogos & derivados , Uridina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA