Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Autoimmun ; 85: 141-152, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28843422

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Nowadays the survival rate is around 85%. Nevertheless, an urgent clinical need is still represented by primary refractory and relapsed patients who do not significantly benefit from standard approaches, including chemo-radiotherapy and hematopoietic stem cell transplantation (HSCT). For this reason, immunotherapy has so far represented a challenging novel treatment opportunity, including, as the most validated therapeutic options, cancer vaccines, donor-lymphocyte infusions and tumor-specific immune effector cells. More recently, unexpected positive clinical results in ALL have been achieved by application of gene-engineered chimeric antigen expressing (CAR) T cells. Several CAR designs across different trials have generated similar response rates, with Complete Response (CR) of 60-90% at 1 month and an Event-Free Survival (EFS) of 70% at 6 months. Relevant challenges anyway remain to be addressed, such as amelioration of technical, cost and feasibility aspects of cell and gene manipulation and the necessity to face the occurrence of relapse mechanisms. This review describes the state of the art of ALL immunotherapies, the novelties in terms of gene manipulation approaches and the problems emerged from early clinical studies. We describe and discuss the process of clinical translation, including the design of a cell manufacturing protocol, vector production and regulatory issues. Multiple antigen targeting and combination of CAR T cells with molecular targeted drugs have also been evaluated as latest strategies to prevail over immune-evasion.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Intervalo Livre de Doença , Humanos , Imunoterapia/métodos
4.
Br J Haematol ; 161(3): 389-401, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23432359

RESUMO

Current therapeutic regimens for acute myeloid leukaemia (AML) are still associated with high rates of relapse. Immunotherapy with T-cells genetically modified to express chimeric antigen receptors (CARs) represents an innovative approach. Here we investigated the targeting of the interleukin three receptor alpha (IL3RA; CD123) molecule, which is overexpressed on AML bulk population, CD34(+) leukaemia progenitors, and leukaemia stem cells (LSC) compared to normal haematopoietic stem/progenitor cells (HSPCs), and whose overexpression is associated with poor prognosis. Cytokine-induced killer (CIK) cells were transduced with SFG-retroviral-vector encoding an anti-CD123 CAR. Transduced cells were able to strongly kill CD123(+) cell lines, as well as primary AML blasts. Interestingly, secondary colony experiments demonstrated that anti-CD123.CAR preserved in vitro HSPCs, in contrast to a previously generated anti-CD33.CAR, while keeping an identical cytotoxicity profile towards AML. Furthermore, limited killing of normal monocytes and CD123-low-expressing endothelial cells was noted, thus indicating a low toxicity profile of the anti-CD123.CAR. Taken together, our results indicate that CD123-specific CARs strongly enhance anti-AML CIK functions, while sparing HSPCs and normal low-expressing antigen cells, paving the way to develop novel immunotherapy approaches for AML treatment.


Assuntos
Células Matadoras Induzidas por Citocinas/imunologia , Imunoterapia Adotiva/métodos , Leucemia Mieloide Aguda/patologia , Leucemia Mielomonocítica Aguda/patologia , Receptores de Superfície Celular/fisiologia , Linhagem Celular Tumoral/metabolismo , Técnicas de Cocultura , Citocinas/metabolismo , Testes Imunológicos de Citotoxicidade , Células Endoteliais , Feminino , Células HEK293 , Células-Tronco Hematopoéticas , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa de Receptor de Interleucina-3/antagonistas & inibidores , Leucemia Monocítica Aguda/patologia , Masculino , Monócitos , Proteínas Recombinantes de Fusão/fisiologia , Transdução Genética , Ensaio Tumoral de Célula-Tronco
5.
Mol Ther ; 20(9): 1778-90, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22692497

RESUMO

Type 1 regulatory T (Tr1) cells are an inducible subset of CD4(+) Tr cells characterized by high levels of interleukin (IL)-10 production and regulatory properties. Several protocols to generate human Tr1 cells have been developed in vitro. However, the resulting population includes a significant fraction of contaminating non-Tr1 cells, representing a major bottleneck for clinical application of Tr1 cell therapy. We generated an homogeneous IL-10-producing Tr1 cell population by transducing human CD4(+) T cells with a bidirectional lentiviral vector (LV) encoding for human IL-10 and the marker gene, green fluorescent protein (GFP), which are independently coexpressed. The resulting GFP(+) LV-IL-10-transduced human CD4(+) T (CD4(LV-IL-10)) cells expressed, upon T-cell receptor (TCR) activation, high levels of IL-10 and concomitant low levels of IL-4, and markers associated with IL-10. Moreover, CD4(LV-IL-10) T cells displayed typical Tr1 features: the anergic phenotype, the IL-10, and transforming growth factor (TGF)-ß dependent suppression of allogeneic T-cell responses, and the ability to suppress in a cell-to-cell contact independent manner in vitro. CD4(LV-IL-10) T cells were able to control xeno graft-versus-host disease (GvHD), demonstrating their suppressive function in vivo. These results show that constitutive over-expression of IL-10 in human CD4(+) T cells leads to a stable cell population that recapitulates the phenotype and function of Tr1 cells.


Assuntos
Expressão Gênica , Doença Enxerto-Hospedeiro/prevenção & controle , Imunomodulação , Interleucina-10/imunologia , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular , Anergia Clonal , Células Dendríticas/citologia , Células Dendríticas/imunologia , Feminino , Genes Reporter , Vetores Genéticos , Doença Enxerto-Hospedeiro/imunologia , Proteínas de Fluorescência Verde , Humanos , Interleucina-10/biossíntese , Interleucina-10/genética , Interleucina-4/imunologia , Lentivirus/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Nus , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/transplante , Transdução Genética
7.
Mol Ther Oncolytics ; 30: 56-71, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37583386

RESUMO

Discrimination between hematopoietic stem cells and leukemic stem cells remains a major challenge for acute myeloid leukemia immunotherapy. CAR T cells specific for the CD117 antigen can deplete malignant and healthy hematopoietic stem cells before consolidation with allogeneic hematopoietic stem cell transplantation in absence of cytotoxic conditioning. Here we exploit non-viral technology to achieve early termination of CAR T cell activity to prevent incoming graft rejection. Transient expression of an anti-CD117 CAR by mRNA conferred T cells the ability to eliminate CD117+ targets in vitro and in vivo. As an alternative approach, we used a Sleeping Beauty transposon vector for the generation of CAR T cells incorporating an inducible Caspase 9 safety switch. Stable CAR expression was associated with high proportion of T memory stem cells, low levels of exhaustion markers, and potent cellular cytotoxicity. Anti-CD117 CAR T cells mediated depletion of leukemic cells and healthy hematopoietic stem cells in NSG mice reconstituted with human leukemia or CD34+ cord blood cells, respectively, and could be terminated in vivo. The use of a non-viral technology to control CAR T cell pharmacokinetic properties is attractive for a first-in-human study in patients with acute myeloid leukemia prior to hematopoietic stem cell transplantation.

8.
Eur J Immunol ; 41(6): 1652-62, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21469116

RESUMO

IL-10-producing CD4(+) type 1 regulatory T (Tr1) cells, defined based on their ability to produce high levels of IL-10 in the absence of IL-4, are major players in the induction and maintenance of peripheral tolerance. Tr1 cells inhibit T-cell responses mainly via cytokine-dependent mechanisms. The cellular and molecular mechanisms underlying the suppression of APC by Tr1 cells are still not completely elucidated. Here, we defined that Tr1 cells specifically lyse myeloid APC through a granzyme B (GZB)- and perforin (PRF)-dependent mechanism that requires HLA class I recognition, CD54/lymphocyte function-associated antigen (LFA)-1 adhesion, and activation via killer cell Ig-like receptors (KIRs) and CD2. Notably, interaction between CD226 on Tr1 cells and their ligands on myeloid cells, leading to Tr1-cell activation, is necessary for defining Tr1-cell target specificity. We also showed that high frequency of GZB-expressing CD4(+) T cells is detected in tolerant patients and correlates with elevated occurrence of IL-10-producing CD4(+) T cells. In conclusion, the modulatory activities of Tr1 cells are not only due to suppressive cytokines but also to specific cell-to-cell interactions that lead to selective killing of myeloid cells and possibly bystander suppression.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Células Mieloides/metabolismo , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Talassemia beta/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Antígenos CD/metabolismo , Efeito Espectador , Adesão Celular , Comunicação Celular , Células Clonais , Citotoxicidade Imunológica , Granzimas/metabolismo , Antígenos HLA/metabolismo , Humanos , Interleucina-10/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Células Mieloides/imunologia , Células Mieloides/patologia , Perforina/metabolismo , Receptores KIR/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia
9.
Front Immunol ; 13: 867013, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757746

RESUMO

Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful technology that has revolutionized the way we conceive immunotherapy. The impressive clinical results of complete and prolonged response in refractory and relapsed diseases have shifted the landscape of treatment for hematological malignancies, particularly those of lymphoid origin, and opens up new possibilities for the treatment of solid neoplasms. However, the widening use of cell therapy is hampered by the accessibility to viral vectors that are commonly used for T cell transfection. In the era of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) precise genome editing, novel and virus-free methods for T cell engineering are emerging as a more versatile, flexible, and sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss how the use of non-viral vectors can address some of the limitations of the viral methods of gene transfer and allow us to deliver genetic information in a stable, effective and straightforward manner. In particular, we address the main transposon systems such as Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers and nanovectors. We also describe the most relevant preclinical data that have recently led to the use of non-viral gene therapy in emerging clinical trials, and the related safety and efficacy aspects. We will also provide practical considerations for future trials to enable successful and safe cell therapy with non-viral methods for CAR T cell generation.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T , Edição de Genes/métodos , Imunoterapia Adotiva/métodos , RNA Mensageiro , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
10.
Cells ; 9(6)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471151

RESUMO

Chimeric Antigen Receptor (CAR) T-cell therapy has become a new therapeutic reality for refractory and relapsed leukemia patients and is also emerging as a potential therapeutic option in solid tumors. Viral vector-based CAR T-cells initially drove these successful efforts; however, high costs and cumbersome manufacturing processes have limited the widespread clinical implementation of CAR T-cell therapy. Here we will discuss the state of the art of the transposon-based gene transfer and its application in CAR T immunotherapy, specifically focusing on the Sleeping Beauty (SB) transposon system, as a valid cost-effective and safe option as compared to the viral vector-based systems. A general overview of SB transposon system applications will be provided, with an update of major developments, current clinical trials achievements and future perspectives exploiting SB for CAR T-cell engineering. After the first clinical successes achieved in the context of B-cell neoplasms, we are now facing a new era and it is paramount to advance gene transfer technology to fully exploit the potential of CAR T-cells towards next-generation immunotherapy.


Assuntos
Elementos de DNA Transponíveis/genética , Leucemia/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Doença Aguda , Ensaios Clínicos como Assunto , Humanos , Leucemia/genética
11.
Leukemia ; 34(10): 2688-2703, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32358567

RESUMO

Acute myeloid leukemia (AML) initiating and sustaining cells maintain high cell-surface similarity with their cells-of-origin, i.e., hematopoietic stem and progenitor cells (HSPCs), and identification of truly distinguishing leukemia-private antigens has remained elusive to date. To nonetheless utilize surface antigen-directed immunotherapy in AML, we here propose targeting both, healthy and malignant human HSPC, by chimeric antigen receptor (CAR) T-cells with specificity against CD117, the cognate receptor for stem cell factor. This approach should spare most mature hematopoietic cells and would require CAR T termination followed by subsequent transplantation of healthy HSPCs to rescue hematopoiesis. We successfully generated anti-CD117 CAR T-cells from healthy donors and AML patients. Anti-CD117 CAR T-cells efficiently targeted healthy and leukemic CD117-positive cells in vitro. In mice xenografted with healthy human hematopoiesis, they eliminated CD117-expressing, but not CD117-negative human cells. Importantly, in mice xenografted with primary human CD117-positive AML, they eradicated disease in a therapeutic setting. Administration of ATG in combination with rituximab, which binds to the co-expressed CAR T-cell transduction/selection marker RQR8, led to CAR T-cell depletion. Thus, we here provide the first proof of concept for the generation and preclinical efficacy of CAR T-cells directed against CD117-expressing human hematopoietic cells.


Assuntos
Imunoterapia Adotiva , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Biomarcadores , Biópsia , Medula Óssea/metabolismo , Medula Óssea/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/terapia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunofenotipagem , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Depleção Linfocítica , Camundongos , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Clin Invest ; 130(11): 6021-6033, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32780725

RESUMO

BACKGROUNDChimeric antigen receptor (CAR) T cell immunotherapy has resulted in complete remission (CR) and durable response in highly refractory patients. However, logistical complexity and high costs of manufacturing autologous viral products limit CAR T cell availability.METHODSWe report the early results of a phase I/II trial in B cell acute lymphoblastic leukemia (B-ALL) patients relapsed after allogeneic hematopoietic stem cell transplantation (HSCT) using donor-derived CD19 CAR T cells generated with the Sleeping Beauty (SB) transposon and differentiated into cytokine-induced killer (CIK) cells.RESULTSThe cellular product was produced successfully for all patients from the donor peripheral blood (PB) and consisted mostly of CD3+ lymphocytes with 43% CAR expression. Four pediatric and 9 adult patients were infused with a single dose of CAR T cells. Toxicities reported were 2 grade I and 1 grade II cytokine-release syndrome (CRS) cases at the highest dose in the absence of graft-versus-host disease (GVHD), neurotoxicity, or dose-limiting toxicities. Six out of 7 patients receiving the highest doses achieved CR and CR with incomplete blood count recovery (CRi) at day 28. Five out of 6 patients in CR were also minimal residual disease negative (MRD-). Robust expansion was achieved in the majority of the patients. CAR T cells were measurable by transgene copy PCR up to 10 months. Integration site analysis showed a positive safety profile and highly polyclonal repertoire in vitro and at early time points after infusion.CONCLUSIONSB-engineered CAR T cells expand and persist in pediatric and adult B-ALL patients relapsed after HSCT. Antileukemic activity was achieved without severe toxicities.TRIAL REGISTRATIONClinicalTrials.gov NCT03389035.FUNDINGThis study was supported by grants from the Fondazione AIRC per la Ricerca sul Cancro (AIRC); Cancer Research UK (CRUK); the Fundación Científica de la Asociación Española Contra el Cáncer (FC AECC); Ministero Della Salute; Fondazione Regionale per la Ricerca Biomedica (FRRB).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Adolescente , Adulto , Aloenxertos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia
13.
Hum Gene Ther ; 29(5): 602-613, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29641322

RESUMO

Infusion of patient-derived CD19-specific chimeric antigen receptor (CAR) T cells engineered by viral vectors achieved complete remission and durable response in relapsed and refractory (r/r) B-lineage neoplasms. Here, we expand on those findings by providing a preclinical evaluation of allogeneic non-viral cytokine-induced killer (CIK) cells transfected with the Sleeping Beauty (SB) transposon CD19CAR (CARCIK-CD19). Specifically, thanks to a large-scale 18-day manufacturing process, it was possible to achieve stable CD19CAR expression (62.425 ± 6.399%) and efficient T-cell expansion (23.36 ± 3.00-fold). Frozen/thawed CARCIK-CD19 remained fully functional both in vitro and in an established patient-derived xenograft (PDX) of MLL-ENL rearranged acute lymphoblastic leukemia (ALL). CARCIK-CD19 showed a dose-dependent antitumor response and prolonged persistence in a PDX, bearing the feature of a Philadelphia-like ALL with PAX5/AUTS2 translocation, and in a survival model of lymphoma, achieving complete eradication of disseminated tumors. Finally, the infusion of CARCIK-CD19 proved to be safe and well tolerated in a biodistribution and toxicity model. The infused cells persisted in the hematopoietic and post-injection perfused organs until the end of the study and consisted of CD8+, CD56+, and CAR+ T cells. Overall, these findings provide important implications for non-viral technology and the proof-of-concept that donor-derived CARCIK-CD19 are indeed effective against relapsed ALL, a possibility that will be tested in Phase I/II clinical trials after allogeneic hematopoietic stem-cell transplantation.


Assuntos
Células Matadoras Induzidas por Citocinas/imunologia , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Animais , Antígenos CD19/genética , Antígenos CD19/imunologia , Antígenos CD19/uso terapêutico , Regulação Neoplásica da Expressão Gênica/genética , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Oncotarget ; 7(32): 51581-51597, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27323395

RESUMO

Chimeric antigen receptor (CAR)-modified T-cell adoptive immunotherapy is a remarkable therapeutic option proven effective in the treatment of hematological malignancies. In order to optimize cell manufacturing, we sought to develop a novel clinical-grade protocol to obtain CAR-modified cytokine-induced killer cells (CIKs) using the Sleeping Beauty (SB) transposon system. Administration of irradiated PBMCs overcame cell death of stimulating cells induced by non-viral transfection, enabling robust gene transfer together with efficient T-cell expansion. Upon single stimulation, we reached an average of 60% expression of CD123- and CD19- specific 3rd generation CARs (CD28/OX40/TCRzeta). Furthermore, modified cells displayed persistence of cell subsets with memory phenotype, specific and effective lytic activity against leukemic cell lines and primary blasts, cytokine secretion, and proliferation. Adoptive transfer of CD123.CAR or CD19.CAR lymphocytes led to a significant anti-tumor response against acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) disseminated diseases in NSG mice. Notably, we found no evidence of integration enrichment near cancer genes and transposase expression at the end of the differentiation. Taken all together, our findings describe a novel donor-derived non-viral CAR approach that may widen the repertoire of available methods for T cell-based immunotherapy.


Assuntos
Terapia Genética/métodos , Imunoterapia Adotiva/métodos , Leucemia/patologia , Leucemia/terapia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/transplante , Transposases/genética , Doença Aguda , Adolescente , Animais , Antígenos CD19/genética , Antígenos CD19/metabolismo , Linhagem Celular Tumoral , Criança , Pré-Escolar , Terapia Combinada , Feminino , Humanos , Lactente , Subunidade alfa de Receptor de Interleucina-3/genética , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Leucemia/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/metabolismo , Transposases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Front Oncol ; 3: 106, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23641364

RESUMO

Despite the survival of pediatric patients affected by hematological malignancies being improved in the last 20 years by chemotherapy and hematopoietic stem cell transplantation, a significant amount of patients still relapses. Treatment intensification is limited by toxic side effects and is constrained by the plateau of efficacy, while the pipeline of new chemotherapeutic drugs is running short. Therefore, novel therapeutic strategies are essential and researchers around the world are testing in clinical trials immune and gene-therapy approaches as second-line treatments. The aim of this review is to give a glance at these novel promising strategies of advanced medicine in the field of pediatric leukemias. Results from clinical protocols using new targeted "smart" drugs, immunotherapy, and gene therapy are summarized, and important considerations regarding the combination of these novel approaches with standard treatments to promote safe and long-term cure are discussed.

16.
Nat Med ; 19(6): 739-46, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23624599

RESUMO

CD4(+) type 1 T regulatory (Tr1) cells are induced in the periphery and have a pivotal role in promoting and maintaining tolerance. The absence of surface markers that uniquely identify Tr1 cells has limited their study and clinical applications. By gene expression profiling of human Tr1 cell clones, we identified the surface markers CD49b and lymphocyte activation gene 3 (LAG-3) as being stably and selectively coexpressed on mouse and human Tr1 cells. We showed the specificity of these markers in mouse models of intestinal inflammation and helminth infection and in the peripheral blood of healthy volunteers. The coexpression of CD49b and LAG-3 enables the isolation of highly suppressive human Tr1 cells from in vitro anergized cultures and allows the tracking of Tr1 cells in the peripheral blood of subjects who developed tolerance after allogeneic hematopoietic stem cell transplantation. The use of these markers makes it feasible to track Tr1 cells in vivo and purify Tr1 cells for cell therapy to induce or restore tolerance in subjects with immune-mediated diseases.


Assuntos
Antígenos CD/análise , Integrina alfa2/análise , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD/genética , Separação Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nippostrongylus , Infecções por Strongylida/imunologia , Linfócitos T Reguladores/química , Células Th17/imunologia , Transcriptoma , Proteína do Gene 3 de Ativação de Linfócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA