Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 90(2): 1370-1375, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29227631

RESUMO

Nanoporous materials are key components in a vast number of applications from energy to drug delivery and to agriculture. However, the number of ways to analytically quantify the salient features of these materials, for example: surface structure, pore shape, and size, remain limited. The most common approach is gas absorption, where volumetric gas absorption and desorption are measured. This technique has some fundamental drawbacks such as low sample throughput and a lack of direct surface visualization. In this work, we demonstrate Helium Ion Microscopy (HIM) as a tool for imaging and quantification of pores in industrially relevant SiO2 catalyst supports. We start with the fundamental principles of ion-sample interaction, and build on this knowledge to experimentally observe and quantify surface pores by using the HIM and image data analytics. We contrast our experimental results to gas absorption and demonstrate full statistical agreement between two techniques. The principles behind the theoretical, experimental, and analytical framework presented herein offer an automated framework for visualization and quantification of pore structures in a wide variety of materials.

2.
Nanotechnology ; 29(49): 495301, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30215615

RESUMO

A simulation study of focused ion beam (FIB) sputtering in SiO2 is presented. The basis of this study is an enhanced version of the EnvizION Monte Carlo simulation program for FIB processing, which previously was restricted to targets composed of a single atom. A Monte Carlo method is presented for the simulation of FIB sputtering in SiO2 in three-dimensions, with ion implantation, to elucidate the complex dynamics of nanoscale milling of compound targets. This method is applied to the simulation of sputtering experiments using both Ne+ and Ga+ ion beams. We compare simulations using experimentally derived 'measured' beam profiles for each ion species, and 'effective' beam profiles which are chosen to reproduce experimental results. Simulations using the 'measured' beam profiles produce vias which are narrower than experiments, while the 'effective' beam profiles for both Ne+ and Ga+ are significantly wider than the 'measured' profiles. The difference between the 'measured' and 'effective' beam profiles is attributed to widening of the milling effects of the beam beyond its static dimensions, due to platform level artifacts such as vibrations and, possibly, charging. Simulations using the 'effective' beam profiles are found to accurately reproduce the depths and overall shape of experimental FIB sputtered vias in test cases, which vary in ion species, beam energy, total dose, and raster parameters. This comparison is the most extensive validation of the EnvizION simulation against experiments to date. However, the location of implanted ions in simulations is shallower than experiments, which is attributed to the fact that implanted species are required to find nearest neighbor vacancies and not allowed to occupy interstitial positions.

3.
Nanotechnology ; 28(4): 045305, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27991448

RESUMO

We present an updated version of our Monte-Carlo based code for the simulation of ion beam sputtering. This code simulates the interaction of energetic ions with a target, and tracks the cumulative damage, enabling it to simulate the dynamic evolution of nanostructures as material is removed. The updated code described in this paper is significantly faster, permitting the inclusion of new features, namely routines to handle interstitial atoms, and to reduce the surface energy as the structure would otherwise develop energetically unfavorable surface porosity. We validate our code against the popular Monte-Carlo code SRIM-TRIM, and study the development of nanostructures from Ne+ ion beam milling in a copper target.

4.
Micromachines (Basel) ; 11(5)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32455865

RESUMO

The next generation optical, electronic, biological, and sensing devices as well as platforms will inevitably extend their architecture into the 3rd dimension to enhance functionality. In focused ion beam induced deposition (FIBID), a helium gas field ion source can be used with an organometallic precursor gas to fabricate nanoscale structures in 3D with high-precision and smaller critical dimensions than focused electron beam induced deposition (FEBID), traditional liquid metal source FIBID, or other additive manufacturing technology. In this work, we report the effect of beam current, dwell time, and pixel pitch on the resultant segment and angle growth for nanoscale 3D mesh objects. We note subtle beam heating effects, which impact the segment angle and the feature size. Additionally, we investigate the competition of material deposition and sputtering during the 3D FIBID process, with helium ion microscopy experiments and Monte Carlo simulations. Our results show complex 3D mesh structures measuring ~300 nm in the largest dimension, with individual features as small as 16 nm at full width half maximum (FWHM). These assemblies can be completed in minutes, with the underlying fabrication technology compatible with existing lithographic techniques, suggesting a higher-throughput pathway to integrating FIBID with established nanofabrication techniques.

5.
Nanoscale Adv ; 1(9): 3584-3596, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36133559

RESUMO

Elucidating energetic particle-precursor gas-solid interactions is critical to many atomic and nanoscale synthesis approaches. Focused ion beam sputtering and gas-assisted etching are among the more commonly used direct-write nanomachining techniques that have been developed. Here, we demonstrate a method to simulate gas-assisted focused ion beam (FIB) induced etching for editing/machining materials at the nanoscale. The method consists of an ion-solid Monte Carlo simulation, to which we have added additional routines to emulate detailed gas precursor-solid interactions, including the gas flux, adsorption, and desorption. Furthermore, for the reactive etching component, a model is presented by which energetic ions/target atoms, and secondary electrons, transfer energy to adsorbed gas molecules. The simulation is described in detail, and is validated using analytical and experimental data for surface gas adsorption, and etching yields. The method is used to study XeF2 assisted FIB induced etching of nanoscale vias, using both a 35 keV Ga+, and a 10 keV Ne+ beam. Remarkable agreement between experimental and simulated nanoscale vias is demonstrated over a range of experimental conditions. Importantly, we demonstrate that the resolution depends strongly on the XeF2 gas flux, with optimal resolution obtained for either pure sputtering, or saturated gas coverage; saturated gas coverage has the clear advantage of lower overall dose, and thus lower implant damage, and much faster processing.

6.
ACS Appl Mater Interfaces ; 9(40): 35125-35132, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28933531

RESUMO

Amorphous indium gallium zinc oxide (a-IGZO) is a transparent semiconductor which has demonstrated excellent electrical performance as thin-film transistors (TFTs). However, a high-temperature activation process is generally required which is incompatible for next-generation flexible electronic applications. In this work, He+ irradiation is demonstrated as an athermal activation process for a-IGZO TFTs. Controlling the He+ dose enables the tuning of charge density, and a dose of 1 × 1014 He+/cm2 induces a change in charge density of 2.3 × 1012 cm-2. Time-dependent transport measurements and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) indicate that the He+-induced trapped charge is introduced because of preferential oxygen-vacancy generation. Scanning microwave impedance microscopy confirms that He+ irradiation improves the conductivity of the a-IGZO. For realization of a permanent activation, IGZO was exposed with a He+ dose of 5 × 1014 He+/cm2 and then aged 24 h to allow decay of the trapped oxide charge originating for electron-hole pair generation. The resultant shift in the charge density is primarily attributed to oxygen vacancies generated by He+ sputtering in the near-surface region.

7.
ACS Appl Mater Interfaces ; 8(42): 29155-29162, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27700046

RESUMO

Focused helium ion (He+) milling has been demonstrated as a high-resolution nanopatterning technique; however, it can be limited by its low sputter yield as well as the introduction of undesired subsurface damage. Here, we introduce pulsed laser- and gas-assisted processes to enhance the material removal rate and patterning fidelity. A pulsed laser-assisted He+ milling process is shown to enable high-resolution milling of titanium while reducing subsurface damage in situ. Gas-assisted focused ion beam induced etching (FIBIE) of Ti is also demonstrated in which the XeF2 precursor provides a chemical assist for enhanced material removal rate. Finally, a pulsed laser-assisted and gas-assisted FIBIE process is shown to increase the etch yield by ∼9× relative to the pure He+ sputtering process. These He+ induced nanopatterning techniques improve material removal rate, in comparison to standard He+ sputtering, while simultaneously decreasing subsurface damage, thus extending the applicability of the He+ probe as a nanopattering tool.

8.
ACS Appl Mater Interfaces ; 5(10): 4450-6, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23607517

RESUMO

The directed assembly of arrayed nanoparticles is demonstrated by dictating the flow of a liquid phase filament on the nanosecond time scale. Results for the assembly of Ni nanoparticles on SiO2 are presented. Previously, we have implemented a sinusoidal perturbation on the edge of a solid phase Ni, thin film strip to tailor nanoparticle assembly. Here, a nonlinear square waveform is explored. This waveform made it possible to expand the range of nanoparticle spacing-radius combinations attainable, which is otherwise limited by the underlying Rayleigh-Plateau type of instability. Simulations of full Navier-Stokes equations based on volume of fluid method were implemented to gain further insight regarding the nature of instability mechanism leading to particle formation in experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA