Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int Microbiol ; 27(2): 459-476, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37495894

RESUMO

Gellan gum (GG) has gained tremendous attention owing to its diversified applications. However, its high production and hence market cost are still a bottleneck in its widespread utilization. In the present study, high GG producing mutant of Sphingomonas spp. was developed by random mutagenesis using ethyl methylsulphonate (EMS) for industrial fermentation and identified as Sphingomonas trueperi after 16S rRNA and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) analysis. The fermentation conditions such as pH, temperature, and inoculum ratio were optimized by one factor at a time (OFAT) followed by screening of medium components by the Plackett-Burman statistical design. The most critical nutrients were further optimized by response surface methodology for maximizing GG production. The effect of dissolved oxygen tension in bioreactor on cell growth, substrate consumption, GG production, and batch productivity was elucidated. The highest GG titer (23 ± 2.4 g/L) was attained in optimized medium at 10% inoculum (6.45 ± 0.5 log cfu/mL) under controlled fermentation conditions of pH (7), temperature (30 °C), agitation (300-600 rpm), and aeration (0.5-2.0 SLPM) at 22 ± 2% dissolved oxygen tension in a 10-L bioreactor. Kinetic modeling of optimized batch process revealed that logistic growth model could best explain biomass accumulation, while GG formation and substrate consumption were best explained by Luedeking-Piret and exponential decay model, respectively. Structural and physico-functional features of GG produced by mutant Sphingomonas spp. were characterized by HPLC, FTIR, NMR, DSC, TGA, GPC, SEM, and rheological analysis. The higher productivity (0.51 g/L/h) under optimized fermentation conditions suggests potential consideration of mutant and process for commercial utilization.


Assuntos
Sphingomonas , Sphingomonas/genética , RNA Ribossômico 16S , Fermentação , Polissacarídeos Bacterianos , Mutagênese , Oxigênio
2.
Mol Carcinog ; 55(12): 2135-2155, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26764221

RESUMO

Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is responsible for initiation, chemo-resistance, and poor prognosis of colorectal cancer (CRC). Therefore, PI3K pathway inhibition can provide a plausible way of attaining CRC treatment. We report PI3K target specific synthesis and selection of a potent molecule, that is, 2,3-dihydro-2-(naphthalene-1-yl) quinazolin-4(1H)-one (DHNQ) from quinazolinone series based on the structural activity relationship after evaluation in diverse cancers. This molecule inhibited the PI3K enzyme activity and transcriptional as well as translational expression levels in colorectal cancer (CRC) models. This was associated with subsequent decrease in phosphorylation of its downstream effector proteins, that is, p-Akt(Ser-473) and p-mTORC1(Ser-2448) and decreased ERK signaling. Furthermore, DHNQ decreased expression of cyclins that caused G1 arrest and decreased Bcl-2/Bax ratio after mitochondrial membrane potential loss, reactive oxygen species generation, and an increase in cytosolic Ca2+ loads that is responsible for the decreased CRC cell proliferation and survival. These biochemical changes triggered apoptotic cell death with altered autophagic Beclin-1 and LC3ß expression. It seemed that the PI3K-Akt signaling regulated apoptosis and autophagy through different mechanisms but mTORC1 mediated autophagy appeared not to be involved in the cell death induction by DHNQ. The molecule also showed significant anticancer efficacy in in vivo tumor models without any mortality indicating its non-toxic nature with possible clinical significance. Overall, the selective elucidation of DHNQ molecular mechanism will provide the possible strategies for the clinical development in CRC that may respond to this specific, potent and novel P13K inhibitor. © 2016 Wiley Periodicals, Inc.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Quinazolinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinonas/química , Reto/efeitos dos fármacos , Reto/metabolismo , Reto/patologia
3.
Tumour Biol ; 37(10): 13121-13136, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27449046

RESUMO

Colchicine, an antimitotic alkaloid isolated from Colchicum autumnale, is a classical drug for treatment of gout and familial Mediterranean fever. It causes antiproliferative effects through the inhibition of microtubule formation, which leads to mitotic arrest and cell death by apoptosis. Here, we report that a novel colchicine analog, 4o (N-[(7S)-1,2,3-trimethoxy-9-oxo-10-[3-(trifluoromethyl)-4-chlorophenylamino]-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl]acetamide), which exhibited potent anticancer activities both in vitro and in vivo. In this study, 4o with excellent pharmacokinetic profile and no P-gp induction liability displayed strong inhibition of proliferation against various human cancer cell lines. However, pancreatic cancer cell line MIA PaCa-2 was found to be more sensitive towards 4o and showed strong inhibition in concentration and time-dependent manner. By increasing intracellular reactive oxygen species (ROS) levels, 4o induced endoplasmic reticular stress and mitochondrial dysfunction in MIA PaCa-2 cells. Blockage of ROS production reversed 4o-induced endoplasmic reticulum (ER) stress, calcium release, and cell death. More importantly, it revealed that increased ROS generation might be an effective strategy in treating human pancreatic cancer. Further 4o treatment induced mitotic arrest, altered the expression of cell cycle-associated proteins, and disrupted the microtubules in MIA PaCa-2 cells. 4o treatment caused loss of mitochondrial membrane potential, cytochrome c release, upregulation of Bax, downregulation of Bcl-2, and cleavage of caspase-3, thereby showing activation of mitochondrial mediated apoptosis. The in vivo anticancer activity of the compound was studied using sarcoma-180 (ascitic) and leukemia (P388 lymphocytic and L1210 lymphoid) models in mice and showed promising antitumor activity with the least toxicity unlike colchicine. Such studies have hitherto not been reported. Taken together, these findings highlighted that 4o, a potent derivative of colchicine, causes tumor regression with reduced toxicity and provides a novel anticancer candidate for the therapeutic use.


Assuntos
Apoptose/efeitos dos fármacos , Colchicina/farmacologia , Leucemia Experimental/patologia , Microtúbulos/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Sarcoma Experimental/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Técnicas Imunoenzimáticas , Leucemia Experimental/tratamento farmacológico , Leucemia Experimental/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos DBA , Microtúbulos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Sarcoma Experimental/tratamento farmacológico , Sarcoma Experimental/metabolismo , Moduladores de Tubulina/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Org Biomol Chem ; 13(20): 5674-89, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25895604

RESUMO

Colchicine (1), a nature-derived microtubule polymerization inhibitor, develops multi-drug resistance in tumor cells due to its P-gp substrate and induction activity, which in turn leads to its rapid efflux from tumor cells. This auto-induction of the efflux of colchicine remains a major challenge to medicinal chemists. Based on structure-based molecular modeling, a series of new colchicine derivatives were designed and synthesized with a potential for reduced P-gp induction liability. Screening of the prepared derivatives for P-gp induction activity revealed that a number of derivatives possess remarkably lower P-gp-induction activity (>90% intracellular accumulation of rhodamine 123 in LS-180 cells) compared to the parent natural product colchicine (62% Rh123 accumulation in LS-180 cells). The reduced P-gp-induction activity of new derivatives may be due to their reduced ability to interact and change the conformation of P-gp. The synthesized derivatives were then screened for antiproliferative activity against two colon cancer cell lines including HCT-116 and Colo-205. The derivative 4o showed potent cytotoxicity in HCT-116 cells with IC50 of 0.04 µM with significantly reduced P-gp induction liability. Compound 4o also inhibited microtubule assembly and induced expression of pro-apoptotic protein p21. In an Ehrlich solid tumor mice model, compound 4o showed 38% TGI with no mortality at 2 mg kg(-1) dose (oral). Compound 4o, with potent in vitro and in vivo anticancer activity, significantly reduced P-gp induction activity and its excellent physicochemical and pharmacokinetic properties open up new opportunities for the colchicine scaffold.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Acetamidas/farmacologia , Antineoplásicos/farmacologia , Carcinoma de Ehrlich/patologia , Proliferação de Células/efeitos dos fármacos , Colchicina/análogos & derivados , Colchicina/farmacologia , Neoplasias do Colo/patologia , Moduladores de Tubulina/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Acetamidas/química , Acetamidas/farmacocinética , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Western Blotting , Carcinoma de Ehrlich/tratamento farmacológico , Colchicina/química , Colchicina/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Conformação Proteica , Distribuição Tecidual , Moduladores de Tubulina/química , Células Tumorais Cultivadas
5.
Antimicrob Agents Chemother ; 57(11): 5315-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23939903

RESUMO

Drug resistance has become a global threat that, if not addressed, may return us to the preantibiotic era. A way to overcome the problem of growing incidence of global antibiotic resistance is to introduce compounds belonging to classes that are new to the clinic. During a screening of the marine microbial extract library for new antibiotics, one of the extracts showed promising antibacterial activity against Gram-positive organisms. Bioactivity-guided isolation and characterization of active metabolites led to the discovery of a novel thiazolyl cyclic-peptide antibiotic, PM181104. It was isolated and characterized from a marine sponge-associated actinobacterium strain of the genus Kocuria (MTCC 5269). The compound exhibited a potent in vitro antibacterial activity against a broad range of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The MIC values evaluated for the compound were found to be in the single-digit nanomolar range. In in vivo studies of PM181104 in a BALB/c murine septicemia model, the compound displayed 100% effective dose (ED100) values of 2.5 and 5.0 mg/kg of body weight against MRSA and 10.0 mg/kg against VRE. In this report, in vitro and in vivo studies of PM181104 are described.


Assuntos
Actinobacteria/química , Antibacterianos/farmacologia , Organismos Aquáticos/química , Descoberta de Drogas , Peptídeos Cíclicos/farmacologia , Sepse/tratamento farmacológico , Animais , Antibacterianos/isolamento & purificação , Relação Dose-Resposta a Droga , Enterococcus/efeitos dos fármacos , Enterococcus/crescimento & desenvolvimento , Feminino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/isolamento & purificação , Sepse/microbiologia , Resistência a Vancomicina/efeitos dos fármacos
6.
J Fungi (Basel) ; 8(2)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35205918

RESUMO

Antibiotic resistance is becoming a burning issue due to the frequent use of antibiotics for curing common bacterial infections, indicating that we are running out of effective antibiotics. This has been more obvious during recent corona pandemics. Similarly, enhancement of antimicrobial resistance (AMR) is strengthening the pathogenicity and virulence of infectious microbes. Endophytes have shown expression of various new many bioactive compounds with significant biological activities. Specifically, in endophytic fungi, bioactive metabolites with unique skeletons have been identified which could be helpful in the prevention of increasing antimicrobial resistance. The major classes of metabolites reported include anthraquinone, sesquiterpenoid, chromone, xanthone, phenols, quinones, quinolone, piperazine, coumarins and cyclic peptides. In the present review, we reported 451 bioactive metabolites isolated from various groups of endophytic fungi from January 2015 to April 2021 along with their antibacterial profiling, chemical structures and mode of action. In addition, we also discussed various methods including epigenetic modifications, co-culture, and OSMAC to induce silent gene clusters for the production of noble bioactive compounds in endophytic fungi.

7.
Bioresour Technol ; 359: 127498, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35724911

RESUMO

Multiple microbial exopolysaccharides have been reported in recent decade with their structural and functional features. Gellan gum (GG) is among these emerging biopolymers with versatile properties. Low production yield, high downstream cost, and abundant market demand have made GG a high cost material. Hence, an understanding on the various possibilities to develop cost-effective gellan gum bioprocess is desirable. This review focuses on details of upstream and downstream process of GG from an industrial perspective. It emphasizes on GG producing Sphingomonas spp., updates on biosynthesis, strain and media engineering, kinetic modeling, bioreactor design and scale-up considerations. Details of the downstream operations with possible modifications to make it cost-effective and environmentally sustainable have been discussed. The updated regulatory criteria for GG as a food ingredient and analytical tools required to validate the same have been briefly discussed. Derivatives of GG and their applications in various industrial segments have also been highlighted.


Assuntos
Sphingomonas , Reatores Biológicos , Fermentação , Polissacarídeos Bacterianos/química , Sphingomonas/química , Sphingomonas/metabolismo
8.
Int Immunopharmacol ; 97: 107655, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33901737

RESUMO

Sesquiterpene lactones are a class of anti-inflammatory molecules obtained from plants belonging to the Asteraceae family. In this study, the effects of 7-hydroxy frullanolide (7HF), a sesquiterpene lactone, in inhibiting CD4+ T cell and peritoneal macrophage responses were investigated. 7HF, in a dose dependent manner, lowers CD69 upregulation, IL2 production and CD4+ T cell cycling upon activation with the combination of anti-CD3 and anti-CD28. Further mechanistic studies demonstrated that 7HF, at early time points, increases intracellular Ca2+ amounts, over and above the levels induced upon activation. The functional relevance of 7HF-induced Ca2+ increase was confirmed using sub-optimal amounts of BAPTA, an intracellular Ca2+ chelator, which lowers lactate and rescues CD4+ T cell cycling. In addition, 7HF lowers T cell cycling with the combination of PMA and Ionomycin. However, 7HF increases CD4+ T cell cycling with sub-optimal activating signals: only PMA or anti-CD3. Furthermore, LPS-induced nitrite and IL6 production by peritoneal macrophages is inhibited by 7HF in a Ca2+-dependent manner. Studies with Ca2+ channel inhibitors, Ruthenium Red and 2-Aminoethoxydiphenyl borate, lowers the inhibitory effects of 7HF on CD4+ T cell and macrophage responses. In silico studies demonstrated that 7HF binds to Ca2+ channels, TRPV1, IP3R and SERCA, which is mechanistically important. Finally, intraperitoneal administration of 7HF lowers serum inflammatory cytokines, IFNγ and IL6, and reduces the effects of DSS-induced colitis with respect to colon length and colon damage. Overall, this study sheds mechanistic light on the anti-inflammatory potential of 7HF, a natural plant compound, in lowering immune responses.


Assuntos
Anti-Inflamatórios/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Colite/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Linfócitos T CD4-Positivos/imunologia , Colite/induzido quimicamente , Colite/imunologia , Colite/parasitologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Sulfato de Dextrana/administração & dosagem , Modelos Animais de Doenças , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Macrófagos/imunologia , Masculino , Camundongos , Sesquiterpenos/uso terapêutico
9.
Mar Drugs ; 7(3): 464-71, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19841726

RESUMO

2-(2',4'-Dibromophenoxy)-4,6-dibromophenol isolated from the marine sponge Dysidea granulosa (Bergquist) collected off the coast of Lakshadweep islands, Indian Ocean, exhibited potent and broad spectrum in-vitro antibacterial activity, especially against methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), vancomycin resistant Enterococci (VRE), vancomycin sensitive Enterococci (VSE) and Bacillus spp. Minimal inhibitory concentration (MIC) was evaluated against 57 clinical and standard strains of Gram positive and Gram negative bacteria. The observed MIC range was 0.117-2.5 microg/mL against all the Gram positive bacteria and 0.5-2 microg/mL against Gram negative bacteria. The in-vitro antibacterial activity observed was better than that of the standard antibiotic linezolid, a marketed anti-MRSA drug. The results establish 2-(2',4'-dibromophenoxy)-4,6-dibromophenol, as a potential lead molecule for anti-MRSA and anti-VRE drug development.


Assuntos
Antibacterianos/farmacologia , Dysidea/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Éteres Fenílicos/farmacologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/isolamento & purificação , Enterococcus/efeitos dos fármacos , Oceano Índico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Éteres Fenílicos/administração & dosagem , Éteres Fenílicos/isolamento & purificação , Resistência a Vancomicina
10.
Anticancer Agents Med Chem ; 18(1): 57-73, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28925877

RESUMO

AIMS: The current study is focused on the design and synthesis of 4-aryl/heteroaryl-4H-fused pyrans as anti-proliferative agents. All the synthesized molecules were screened against a panel of human carcinoma cell lines. DESCRIPTION: Significant inhibition was exhibited by the compounds against HCT-116 (Colon) and PC-3 (Prostate) cell lines while A-549 (Lung) cell lines, MiaPaCa-2 (Pancreatic) cell lines and HL-60 (Leukemia Cancer) cell lines were almost resistant to the exposure of the test compounds. Compound FP-(v)n displayed noteworthy cytotoxicity towards HCT-116 malignant cells with the IC50 value of 0.67 µM. It induces apoptosis as revealed by several biological endpoints like apoptotic body formation, through DAPI staining, phase contrast microscopy and mitochondrial membrane potential loss. Moreover FP-(v)n is a potent apoptotic inducer confirmed by cell cycle arrest and ROS generation. The cell phase distribution studies indicate an augment from 4.94 % (control sample) to 39.68 % (sample treated with 1.5 µM compound FP-(v)n) in the apoptotic population. Compound FP-(v)n inhibits the tumor growth in Ehrlich ascites carcinoma (EAC), Ehrlich Tumor (ET, solid) and sarcoma-180 (solid) mice models. Additionally, it was established to be non-toxic at maximum tolerated dose of 1000 mg/kg in acute oral toxicity in Swiss-albino mice. CONCLUSION: The current study provides an insight into anti-cancer potential of FP-(v)n, which might be valuable in the treatment of tumor.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Piranos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Piranos/síntese química , Piranos/química , Relação Estrutura-Atividade
11.
Heliyon ; 4(6): e00661, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30003157

RESUMO

In an effort to discover an effective and selective antitumour agent, synthesis and anti-cancer potential of 4-(pyridin-4-yl)-6-(thiophen-2-yl) pyrimidin-2(1H)-one (SK-25), which has been reported earlier by us with significant cytotoxicity towards MiaPaCa-2 malignant cells, with an IC50 value of 1.95 µM and was found to instigate apoptosis. In the present study, the antitumour efficacy of SK-25 was investigated on Ehrlich ascites tumour (EAT, solid), Sarcoma 180 (solid) tumour and Ehrlich ascites carcinoma. The compound was found to inhibit tumour development by 94.71% in Ehrlich ascites carcinoma (EAC), 59.06% in Ehrlich tumour (ET, solid) and 45.68% in Sarcoma-180 (solid) at 30 mg/kg dose. Additionally, SK-25 was established to be non-toxic at a maximum tolerated dose of 1000 mg/kg in acute oral toxicity in Swiss-albino mice. Computer-based predictions also show that the compounds could have an interesting DMPK profile since all 51 computed physicochemical parameters fall within the recommended range for 95% of known drugs. The current study provides insight for further investigation of the antitumour potential of the molecule.

12.
Biochem Pharmacol ; 134: 35-41, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27890726

RESUMO

The discovery of antibiotics heralded an era of improved health care. However, the over-prescription and misuse of antibiotics resulted in the development of resistant strains of various pathogens. Since then, there has been an incessant search for discovering novel compounds from bacteria at various locations with extreme conditions. The soil is one of the most explored locations for bioprospecting. In recent times, hypersaline environments and symbiotic associations have been investigated for novel antimicrobial compounds. Among the extreme environments, hot springs are comparatively less explored. Many researchers have reported the presence of microbial life and secretion of antimicrobial compounds by microorganisms in hot springs. A pioneering research in the corresponding author's laboratory resulted in the identification of the antibiotic Fusaricidin B isolated from a hot spring derived eubacteria, Paenibacillus polymyxa, which has been assigned a new application for its anti-tubercular properties. The corresponding author has also reported anti-MRSA and anti-VRE activity of 73 bacterial isolates from hot springs in India.


Assuntos
Antibacterianos/isolamento & purificação , Bactérias/efeitos dos fármacos , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Fontes Termais/microbiologia , Animais , Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Humanos
13.
J Med Chem ; 60(23): 9470-9489, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29144137

RESUMO

In the present study, a novel series of 3-pyrimidinylazaindoles were designed and synthesized using a bioinformatics strategy as cyclin-dependent kinases CDK2 and CDK9 inhibitors, which play critical roles in the cell cycle control and regulation of cell transcription. The present approach gives new dimensions to the existing SAR and opens a new opportunity for the lead optimizations from comparatively inexpensive starting materials. The study led to the identification of the alternative lead candidate 4ab with a nanomolar potency against CDK2 and CDK9 and potent antiproliferative activities against a panel of tested tumor cell lines along with a better safety ratio of ∼33 in comparison to reported leads. In addition, the identified lead 4ab demonstrated a good solubility and an acceptable in vivo PK profile. The identified lead 4ab showed an in vivo efficacy in mouse triple-negative breast cancer (TNBC) syngeneic models with a TGI (tumor growth inhibition) of 90% without any mortality growth inhibition in comparison to reported leads.


Assuntos
Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Indóis/química , Indóis/uso terapêutico , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mama/efeitos dos fármacos , Mama/metabolismo , Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Indóis/farmacocinética , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
14.
Int Immunopharmacol ; 33: 63-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26869203

RESUMO

Rheumatoid arthritis (RA), an autoimmune-inflammatory disease is characterized by dysregulation of signal transduction pathways, increased production of pro-inflammatory cytokines, enhanced leukocyte infiltration into synovial microvascular endothelium, extensive formation of hyper proliferative pannus, degradation of cartilage and bone erosion. Several compounds that abrogate cytokine production demonstrate a therapeutic effect in experimental models of arthritis. In this study, we report that a novel semi-synthetic natural product (Compound A) being a preferential IL-6 inhibitor, is efficacious in a murine model of arthritis. In vitro evaluations of pro-inflammatory cytokine production reveal that Compound A preferentially inhibits induced production of IL-6 and not TNF-α from THP-1 cells and isolated human monocytes. Furthermore, Compound A robustly inhibits the spontaneous production of IL-6 from pathologically relevant synovial tissue cells isolated from patients with active RA. In a physiologically relevant assay, Compound A selectively inhibits the activated T cell contact-mediated production of IL-6 from human monocytes. Compound A, at pharmacologically efficacious concentrations, does not significantly curtail the LPS-induced activation of p38 MAPKs. In the collagen-induced arthritis (CIA) mouse model (i) macroscopic observations demonstrate that Compound A, administered subcutaneously in a therapeutic regimen, significantly and dose-dependently inhibits disease associated increases in articular index and paw thickness; (ii) histological analyses of paw tissues reveal that Compound A prominently diminishes joint destruction, hyperproliferative pannus formation and infiltration of inflammatory cells. Collectively, these results provide direct evidence that Compound A, a novel preferential IL-6 inhibitor, suppresses collagen-induced arthritis, and may be a potential therapeutic for treating patients with active RA.


Assuntos
Actinobacteria/imunologia , Antirreumáticos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Interleucina-6/antagonistas & inibidores , Monócitos/efeitos dos fármacos , Polienos/uso terapêutico , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Monócitos/imunologia , Polienos/síntese química
15.
Eur J Pharm Sci ; 92: 183-93, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27404580

RESUMO

The anticancer potential of gemcitabine, a nucleoside analog, is compromised due to the enzymatic degradation into inactive form leading to the short half-life in systemic circulation. Novel delivery strategies are required to improve therapeutic efficacy of this potential drug. Monomethoxy polyethylene glycol amine-polylactide-co-glycolide (mPEG-PLGA) co-polymer was synthesized and characterized by FTIR and (1)H NMR. Gemcitabine loaded mPEG-PLGA nanoparticles (NPs) were developed and investigated for pharmacokinetic profile and in vivo anticancer activity. The mPEG-PLGA NPs (size: 267±10nm, zeta potential: -17.5±0.2mV) exhibited sustained drug release profile and were found to be compatible with blood. The mPEG-PLGA NPs were able to evade the uptake by macrophages (i.e. THP-1 and J774A) by reducing the adsorption of proteins on the surface of NPs. The enhanced cellular uptake and cell cytotoxicity was observed by mPEG-PLGA NPs in MiaPaCa-2 and MCF-7 cells. The half-life of gemcitabine in mPEG-PLGA NPs was remarkably enhanced (19 folds) than native gemcitabine. Further, the pharmacokinetic modulation of gemcitabine using mPEG-PLGA-NPs was translated in improved anticancer efficacy as compared to native gemcitabine in Ehrlich ascites bearing Balb-c mice. The results demonstrated the potential of long-circulatory nanoparticles in improving the pharmacokinetic profile and in-turn the anticancer efficacy of gemcitabine.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Carcinoma de Ehrlich/tratamento farmacológico , Desoxicitidina/análogos & derivados , Portadores de Fármacos/administração & dosagem , Nanopartículas/administração & dosagem , Animais , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/uso terapêutico , Carcinoma de Ehrlich/patologia , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/farmacocinética , Desoxicitidina/uso terapêutico , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/uso terapêutico , Liberação Controlada de Fármacos , Eritrócitos/efeitos dos fármacos , Feminino , Hemólise/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Poliésteres/química , Polietilenoglicóis/química , Ratos , Carga Tumoral/efeitos dos fármacos , Gencitabina
16.
Food Chem Toxicol ; 87: 1-11, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26615871

RESUMO

We have synthesized a novel quinazolinone chalcone derivative (QC) and first time reported its in-vitro and in-vivo anticancer potential. It inhibited the cell proliferation of different cancer cell lines like PC-3, Panc-1, Mia-Paca-2, A549, MCF-7 and HCT-116. It induces apoptosis as measured by several biological endpoints such as apoptotic body formation, evident by Hoechst and scanning electron microscopy, enhanced annexinV-FITC binding of the cells, increased sub-G0 cell fraction, loss of mitochondrial membrane potential (Δψm), reduction of Bcl-2/Bax ratio, activation of caspase-9, caspase-3 and PARP-1 (poly-ADP Ribose polymerase) cleavage in HCT-116 cells. In spite of apoptosis, QC significantly hammers the downstream and upstream signaling cascade of PI3K/Akt/mTOR pathway and cell cycle regulator Skp-2, p21 and p27. Interestingly, QC induces the S and G2/M phase of HCT-116 cells at experimental doses. QC inhibits the tumor growth of Ehrlich ascites carcinoma (EAC), Ehrlich tumor (ET, solid) and sarcoma-180(solid) mice models. Furthermore, it was found to be non-toxic as no animal mortality (0/7) occurred during experimental doses. The present study provides an insight of anticancer potential of QC, which may be useful in managing and treating cancer.


Assuntos
Apoptose/efeitos dos fármacos , Chalconas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinonas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Quinazolinonas/química , Distribuição Aleatória , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
17.
Eur J Med Chem ; 122: 731-743, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27479483

RESUMO

Isoform-selective inhibition of PI3K-α has been identified as one of the important strategy to discover effective and safer anticancer agents. Herein, we report discovery of 'quinazoline' as a new chemotype for isoform-selective PI3K-α inhibitors. The indolyl substituted quinazoline 9u displayed selective inhibition of PI3K-α with IC50 value of 0.201 µM with >49.7 over PI3K-ß, and δ-isoforms. Quinazoline 9u also inhibited PI3K-γ with IC50 value of 0.750 µM (3.7 fold selective for α-versus γ-isoform). The isoform-selective inhibition was also demonstrated at protein-expression level by western-blot analysis in MCF-7 and PC-3 cells. The isoform-selective inhibitor 9u also showed inhibition of phospho-Akt levels in these cells. Quinazoline 9u showed in-vitro cytotoxicity in MCF-7 cells with GI50 of 7 µM, which was highly selective for cancer cells, as it was non-toxic to normal cells fR2, HEK293 and hGF (GI50 > 50 µM). Compound 9u at 25 mg/kg dose showed 62 and 37% TGI in Ehrlich Ascites Carcinoma and Ehrlich Solid Tumor mice models. In nutshell, our efforts to identify potent and efficacious PI3K inhibitors resulted in the discovery of a new class of isoform-selective PI3K-α inhibitors possessing promising in-vivo anticancer activity.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Quinazolinas/química , Quinazolinas/farmacologia , Animais , Células CACO-2 , Linhagem Celular Tumoral , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Camundongos , Permeabilidade , Quinazolinas/metabolismo , Solubilidade , Serina-Treonina Quinases TOR/antagonistas & inibidores
18.
Chem Biol Drug Des ; 88(5): 625-634, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27495835

RESUMO

Benzylidene indanones have been designed and synthesized from gallic acid, a plant phenolic acid as possible anticancer agent. The best analogue of the series, that is, 3-(3',4',5'-trimethoxyphenyl)-4,5,6-trimethoxy-2-(4˝-nitrobenzylidene)-indan-1-one (8) exhibited potent cytotoxicity (IC50 =3-10 µm) against several human cancer cell lines through microtubule destabilization (IC50 =1.54 µm) after occupying colchicine-binding site of ß-tubulin. In cell cycle analysis, compound 8 exerted G2/M phase arrest in both MCF-7 and MDA-MB-231 cells and induced apoptosis. It reduced 34.8% solid tumor in in vivo Ehrlich ascite carcinoma in Swiss albino mice at 30 mg/kg dose. In acute oral toxicity experiment, it was tolerable up to 300 mg/kg doses in Swiss albino mice. The lead compound 8 needs to be optimized for better activity.


Assuntos
Antineoplásicos/química , Ácido Gálico/química , Indanos/química , Moduladores de Tubulina/química , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/química , Sítios de Ligação , Biomarcadores Tumorais/sangue , Carcinoma de Ehrlich/tratamento farmacológico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Indanos/síntese química , Indanos/toxicidade , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/toxicidade
19.
Oncotarget ; 7(3): 3217-32, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26673007

RESUMO

Cancer stem cells (CSCs) appear to explain many aspects of the neoplastic evolution of tumors and likely account for enhanced therapeutic resistance following treatment. Dysregulated Notch signaling, which affects CSCs plays an important role in pancreatic cancer progression. We have determined the ability of Quinomycin to inhibit CSCs and the Notch signaling pathway. Quinomycin treatment resulted in significant inhibition of proliferation and colony formation in pancreatic cancer cell lines, but not in normal pancreatic epithelial cells. Moreover, Quinomycin affected pancreatosphere formation. The compound also decreased the expression of CSC marker proteins DCLK1, CD44, CD24 and EPCAM. In addition, flow cytometry studies demonstrated that Quinomycin reduced the number of DCLK1+ cells. Furthermore, levels of Notch 1-4 receptors, their ligands Jagged1, Jagged2, DLL1, DLL3, DLL4 and the downstream target protein Hes-1 were reduced. The γ-secretase complex proteins, Presenilin 1, Nicastrin, Pen2, and APH-1, required for Notch activation also exhibited decreased expression. Ectopic expression of the Notch Intracellular Domain (NICD) partially rescued the cells from Quinomycin mediated growth suppression. To determine the effect of Quinomycin on tumor growth in vivo, nude mice carrying tumor xenografts were administered Quinomycin intraperitoneally every day for 21 days. Treatment with the compound significantly inhibited tumor xenograft growth, coupled with significant reduction in the expression of CSC markers and Notch signaling proteins. Together, these data suggest that Quinomycin is a potent inhibitor of pancreatic cancer that targets the stem cells by inhibiting Notch signaling proteins.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Equinomicina/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Quinases Semelhantes a Duplacortina , Resistencia a Medicamentos Antineoplásicos , Molécula de Adesão da Célula Epitelial/metabolismo , Citometria de Fluxo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Células-Tronco Neoplásicas , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Notch/metabolismo , Transplante Heterólogo
20.
Adv Biochem Eng Biotechnol ; 147: 37-58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24840777

RESUMO

Microbes continue to play a highly considerable role in the drug discovery and development process. Nevertheless, the number of new chemical entities (NCEs) of microbial origin that has been approved by the Food and Drug Administration (FDA) has been reduced in the past decade. This scarcity can be partly attributed to the redundancy in the discovered molecules from microbial isolates, which are isolated from common terrestrial ecological units. However, this situation can be partly overcome by exploring rarely exploited ecological niches as the source of microbes, which reduces the chances of isolating compounds similar to existing ones. The use of modern and advanced isolation techniques, modification of the existing fermentation methods, genetic modifications to induce expression of silent genes, analytical tools for the detection and identification of new chemical entities, use of polymers in fermentation to enhance yield of fermented compounds, and so on, have all aided in enhancing the frequency of acquiring novel compounds. These compounds are representative of numerous classes of diverse compounds. Thus, compounds of microbial origin and their analogues undergoing clinical trials continue to demonstrate the importance of compounds from microbial sources in modern drug discovery.


Assuntos
Antibacterianos/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Biodiversidade , Produtos Biológicos/metabolismo , Fungos/classificação , Fungos/metabolismo , Antibacterianos/isolamento & purificação , Bactérias/genética , Produtos Biológicos/isolamento & purificação , Descoberta de Drogas , Fungos/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA