Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
J Clin Diagn Res ; 11(6): OC05-OC08, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28764215

RESUMO

INTRODUCTION: Pulse oximetry is a widely used tool, unfortunately there is a paucity of data investigating its accuracy in Intensive Care Units (ICU) and if they are able to meet mandated FDA criteria as claimed by them in critically ill patients. AIM: To assess bias, precision and accuracy of pulse oximeters used in ICU and factors affecting them. MATERIALS AND METHODS: A prospective cohort study, including 129 patients admitted to the ICU of a tertiary referral centre. Pulse oximetry and blood gas were done simultaneously. Pulse oximetry was done using two pulse oximetres: Nonin and Philips. All physiological variables like haemoglobin, lactate, use of vasopressors and blood pressure were recorded. Bland Altman curves were constructed to determine bias and limits of agreement. Effect of physiological variables on bias and difference between performance characteristics of bias was determined using SPSS. RESULTS: Pulse oximetry overestimated arterial oxygen saturation (SaO2) by 1.44%. There was negative correlation between bias and SaO2 (r=-0.32) and positive correlation with lactate (r=0.16). The Philips pulse oximeter had significant higher bias and variability than Nonin pulse oximeter. (2.49±2.99 versus 0.46±1.68, mean difference = 1.98, 95% C.I. = 1.53 - 2.43, p-value <0.001). CONCLUSION: Pulse oximetry overestimates SaO2. Bias tends to increase with rising lactate and hypoxia. There is heterogeneity in performance of various pulse oximetry devices in ICU.

3.
Int J Crit Illn Inj Sci ; 5(1): 27-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25810961

RESUMO

INTRODUCTION: This randomized control trial was carried out to evaluate and compare the efficacy of magnesium sulphate and nitroglycerine (NTG) as adjuncts to lidocaine in intravenous regional anesthesia (IVRA). MATERIALS AND METHODS: Seventy-five, ASA grade I and II patients, aged between 20-50 years, scheduled for hand and forearm surgery were selected and entered randomly into three study groups. Patients in group C received 3 mg/kg of preservative free lidocaine 2% diluted with saline to a total volume of 40 ml. Patients in group M received 3 mg/kg of preservative free lidocaine 2% mixed with 6 ml of 25% magnesium sulphate (1.5 g) diluted with saline to a total volume of 40 ml. Patients in group N received 3 mg/kg of preservative free lidocaine 2% mixed with 200 µg of nitroglycerine diluted with saline to a total volume of 40 ml. Sensory and motor block onset and recovery time, tourniquet pain onset time, intraoperative fentanyl requirement, the total number of patients requiring rescue analgesia and the time to first analgesia requirement, intra-operative and postoperative degree of analgesia were evaluated. RESULTS: The sensory and motor block onset times were shorter in group M and N as compared to group C (P- = 0.004, 0.0036 for sensory block, 0.021, 0.038 for motor block. The mean time of onset of sensory block was earliest in group M and the mean time of onset of motor block was earliest in group N. Mean time of onset of tourniquet pain in the three groups was similar in groups M and N. The sensory and motor block recovery time were significantly prolonged in M and N group as compared to group C (P < 0.001). Intraoperative fentanyl requirement (P value- = 0.041), the total number of patients requiring rescue analgesia (P value = 0.009) and the time to first analgesia requirement (P value = 0.038) were lower in group M. CONCLUSION: The addition of both magnesium suphate and nitroglycerin (NTG) to lidocaine for intravenous regional anesthesia (IVRA) leads to early onset of sensory block and prolonged postoperative analgesia, with no side effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA