Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(33): 18549-18559, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37579341

RESUMO

Organic-inorganic metal hybrids with their tailorable lattice dimensionality and intrinsic spin-splitting properties are interesting material platforms for spintronic applications. While the spin decoherence process is extensively studied in lead- and tin-based hybrids, these systems generally show short spin decoherence lifetimes, and their correlation with the lattice framework is still not well-understood. Herein, we synthesized magnetic manganese hybrid single crystals of (4-fluorobenzylamine)2MnCl4, ((R)-3-fluoropyrrolidinium)MnCl3, and (pyrrolidinium)2MnCl4, which represent a change in lattice dimensionality from 2D and 1D to 0D, and studied their spin decoherence processes using continuous-wave electron spin resonance spectroscopy. All manganese hybrids exhibit nanosecond-scale spin decoherence time τ2 dominated by the symmetry-directed spin exchange interaction strengths of Mn2+-Mn2+ pairs, which is much longer than lead- and tin-based metal hybrids. In contrast to the similar temperature variation laws of τ2 in 2D and 0D structures, which first increase and gradually drop afterward, the 1D structure presents a monotonous rise of τ2 with the temperatures, indicating the strong correlation of spin decoherence with the lattice rigidity of the inorganic framework. This is also rationalized on the basis that the spin decoherence is governed by the competitive contributions from motional narrowing (prolonging the τ2) and electron-phonon coupling interaction (shortening the τ2), both of which are thermally activated, with the difference that the former is more pronounced in rigid crystalline lattices.

2.
Nat Commun ; 15(1): 5556, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956033

RESUMO

Chiral multiferroics offer remarkable capabilities for controlling quantum devices at multiple levels. However, these materials are rare due to the competing requirements of long-range orders and strict symmetry constraints. In this study, we present experimental evidence that the coexistence of ferroelectric, magnetic orders, and crystallographic chirality is achievable in hybrid organic-inorganic perovskites [(R/S)-ß-methylphenethylamine]2CuCl4. By employing Landau symmetry mode analysis, we investigate the interplay between chirality and ferroic orders and propose a novel mechanism for chirality transfer in hybrid systems. This mechanism involves the coupling of non-chiral distortions, characterized by defining a pseudo-scalar quantity, ξ = p ⋅ r ( p represents the ferroelectric displacement vector and r denotes the ferro-rotational vector), which distinguishes between (R)- and (S)-chirality based on its sign. Moreover, the reversal of this descriptor's sign can be associated with coordinated transitions in ferroelectric distortions, Jahn-Teller antiferro-distortions, and Dzyaloshinskii-Moriya vectors, indicating the mediating role of crystallographic chirality in magnetoelectric correlations.

3.
J Nanosci Nanotechnol ; 12(1): 573-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22524022

RESUMO

We report the effect of varying Cr content on magnetic and magnetocaloric properties of Pr0.6Ca0.4Mn(1-x)Cr(x)O3 samples (x = 0, 0.02, 0.04, 0.06 and 0.08). While the parent compound (x = 0) is a charge ordered and antiferromagnetic insulator, Cr doped compounds are ferromagnetic metals with nearly same Curie temperature (T(c) approximately 140 K). We find unusual field-induced meta-magnetic transition above T(c) in x = 0.02 and 0.04 which is absent in x = 0.06 and 0.08. It is suggested that the paramagnetic phase in these compounds is inhomogeneous with coexistence of nano-size ferromagnetic clusters and short range charge ordered clusters. Field induced growth of ferromagnetic nano-clusters and destruction of short-range charge ordering leads to the observed metamagnetic transition, which results in large magnetic entropy change of -deltaS(M) = 5.043, 6, 5.509 and 4.375 J/kg K under deltaH = 5 T, for x = 0.02, 0.04, 0.06 and 0.08, respectively. In addition, large relative cooling power (RCP) found in these materials (327.384, 286.36, 272.22 and 279.936 J/kg) makes it interesting for practical applications. Our study suggests that creation of ferromagnetic nano-clusters in the paramagnetic phase by Mn-site doping in charge ordered compounds provides an alternative approach to achieve high AS(M) and RCP values.


Assuntos
Cromo/química , Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Campos Magnéticos , Teste de Materiais , Conformação Molecular/efeitos da radiação , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície/efeitos da radiação
4.
ACS Omega ; 5(28): 17611-17616, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32715246

RESUMO

We report broadband magnetic resonance in polycrystalline Sr2FeMoO6 measured over the wide temperature (T = 10-370 K) and frequency (f = 2-18 GHz) ranges. Sr2FeMoO6 was synthesized by the sol-gel method and found to be ferromagnetic below T C = 325 K. A coplanar waveguide-based broadband spectrometer was used to record the broadband electron spin resonance (ESR) both in frequency sweep and field sweep modes. From the frequency sweep mode at fixed dc magnetic fields, we obtain the spectroscopic splitting factor g ∼ 2.02 for T ≥ T C K, which confirms the 3+ ionic state of Fe in the material. The effective g value was found to decrease monotonically with decreasing temperature in the ferromagnetic regime. Resonance frequency decreases and the line width of the spectra increases as the temperature decreases below T C. At room temperature (RT) and above, the line width (ΔH) of the ESR signal increases linearly with frequency, giving Gilbert damping constant α ∼0.032 ± 0.005 at RT. However, at lower temperatures, a minimum emerges in the ΔH vs frequency curve, and the minimum shifts to a higher frequency with decreasing temperature, confining the linear frequency regime to a narrow-frequency regime. Additional inhomogeneous broadening and low-field-loss terms are needed to describe the line width in the entire frequency range.

5.
ACS Appl Mater Interfaces ; 12(37): 41802-41809, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32819087

RESUMO

The atomically flat interface of the Y3Fe5O12 (YIG) thin film and the Gd3Ga5O12 (GGG) substrate plays a vital role in obtaining the magnetization dynamics of YIG below and above the anisotropy field. Here, magnetoimpedance (MI) is used to investigate the magnetization dynamics in fully epitaxial 45 nm YIG thin films grown on the GGG (001) substrates using a copper strip coil in the MHz-GHz frequency region. The resistance (R) and reactance (X), which are components of impedance (Z), allow us to probe the absorptive and dispersive components of the dynamic permeability, whereas a conventional spectrometer only measures the field derivative of the power absorbed. The distinct excitation modes arising from the resonance in the uniform and dragged magnetization states of YIG are respectively observed above and below the anisotropy field. The magnetodynamics clearly shows the visible dichotomy between two resonant fields below and above the anisotropy field and its motion as a function of the direction of the applied magnetic field. A low value of a damping factor of ∼4.7 - 6.1 × 10-4 is estimated for uniform excitation mode with an anisotropy field of 65 ± 2 Oe. Investigation of below and above anisotropy field-dependent magnetodynamics in the low-frequency mode can be useful in designing the YIG-based resonators, oscillators, filters, and magnonic devices.

6.
RSC Adv ; 9(3): 1726-1733, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35518048

RESUMO

We report the magnetization (M), magnetostriction, electrical resistivity (ρ), thermal conductivity (κ) and thermopower (S) of polycrystalline La0.9Na0.1MnO3 over a wide temperature range of 5 to 360 K. This sample undergoes a paramagnetic to ferromagnetic transition around T C = 274 K and electrical resistivity ρ shows an insulator-metal transition around T IM = 292 K. The sign of thermopower S is positive in the entire temperature range which indicates that majority charge carriers are holes. Thermopower exhibits a peak and thermal conductivity shows a dip at T C in the absence of magnetic field. Large difference between the experimentally determined activation energies of ρ and S in the insulating state indicates small polaron hopping dominant conduction above T IM. Polaron formation above T C, was further confirmed from the anomaly observed in thermal expansion (ΔL/L 0) which shows a change in slope at T IM. In the vicinity of T C at 3 T applied field, magneto-thermopower (∼61.5%) is larger than magnetothermal conductivity (∼12.7%) and magnetoresistance (∼49%).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA