RESUMO
Dissimilatory sulfate reduction (DSR) mediated by sulfate-reducing microorganisms (SRMs) plays a pivotal role in global sulfur, carbon, oxygen, and iron cycles since at least 3.5 billion y ago. The canonical DSR pathway is believed to be sulfate reduction to sulfide. Herein, we report a DSR pathway in phylogenetically diverse SRMs through which zero-valent sulfur (ZVS) is directly generated. We identified that approximately 9% of sulfate reduction was directed toward ZVS with S8 as a predominant product, and the ratio of sulfate-to-ZVS could be changed with SRMs' growth conditions, particularly the medium salinity. Further coculturing experiments and metadata analyses revealed that DSR-derived ZVS supported the growth of various ZVS-metabolizing microorganisms, highlighting this pathway as an essential component of the sulfur biogeochemical cycle.
Assuntos
Sulfatos , Enxofre , Sulfatos/metabolismo , Oxirredução , Enxofre/metabolismo , Sulfetos/metabolismo , Óxidos de EnxofreRESUMO
Tissue-to-blood partition coefficients (Ptb) are key parameters for assessing toxicokinetics of xenobiotics in organisms, yet their experimental data were lacking. Experimental methods for measuring Ptb values are inefficient, underscoring the urgent need for prediction models. However, most existing models failed to fully exploit Ptb data from diverse sources, and their applicability domain (AD) was limited. The current study developed a multimodal model capable of processing and integrating textual (categorical features) and numerical information (molecular descriptors/fingerprints) to simultaneously predict Ptb values across various species, tissues, blood matrices, and measurement methods. Artificial neural network algorithms with embedding layers were used for the multimodal modeling. The corresponding unimodal models were developed for comparison. Results showed that the multimodal model outperformed unimodal models. To enhance the reliability of the model, a method considering categorical features, weighted molecular similarity density, and weighted inconsistency in molecular activities of structure-activity landscapes was used to characterize the AD. The model constrained by the AD exhibited better prediction accuracy for the validation set, with the determination coefficient, root mean-square error, and mean absolute error being 0.843, 0.276, and 0.213 log units, respectively. The multimodal model coupled with the AD characterization can serve as an efficient tool for internal exposure assessment of chemicals.
Assuntos
Peixes , Relação Quantitativa Estrutura-Atividade , Animais , Reprodutibilidade dos Testes , Mamíferos , Redes Neurais de ComputaçãoRESUMO
A significant challenge that warrants attention is the influence of eutrophication on the biogeochemical cycle of emerging contaminants (ECs) in aquatic environments. Antibiotics pollution in the eutrophic Pearl River in South China was examined to offer new insights into the effects of eutrophication on the occurrence, air-water exchange fluxes (Fair-water), and vertical sinking fluxes (Fsinking) of antibiotics. Antibiotics transferred to the atmosphere primarily through aerosolization controlled by phytoplankton biomass and significant spatiotemporal variations were observed in the Fair-water of individual antibiotics throughout all sites and seasons. The Fsinking of ∑AB14 (defined as a summary of 14 antibiotics) was 750.46 ± 283.19, 242.71 ± 122.87, and 346.74 ± 249.52 ng of m-2 d-1 in spring, summer, and winter seasons. Eutrophication indirectly led to an elevated pH, which reduced seasonal Fair-water of antibiotics, sediment aromaticity, and phytoplankton hydrophobicity, thereby decreasing antibiotic accumulation in sediments and phytoplankton. Negative correlations were further found between Fsinking and the water column daily loss of antibiotics with phytoplankton biomass. The novelty of this study is to provide new complementary knowledge for the regulation mechanisms of antibiotics by phytoplankton biological pump, offering novel perspectives and approaches to understanding the coupling between eutrophication and migration and fate of antibiotics in a subtropical eutrophic river.
Assuntos
Antibacterianos , Eutrofização , Rios , Rios/química , Antibacterianos/análise , Fitoplâncton , Poluentes Químicos da Água/análise , Monitoramento Ambiental , China , Estações do AnoRESUMO
Attention has been drawn to the associations between PFASs and human cognitive decline. However, knowledge on the occurrence and permeability of PFASs in the brains of patients with cognitive impairment has not been reported. Here, we determined 30 PFASs in paired sera and cerebrospinal fluids (CSFs) from patients with cognitive impairment (n = 41) and controls without cognitive decline (n = 18). We revealed similar serum PFAS levels but different CSF PFAS levels, with lower CSF PFOA (median: 0.125 vs 0.303 ng/mL, p < 0.05), yet higher CSF PFOS (0.100 vs 0.052 ng/mL, p < 0.05) in patients than in controls. Blood-brain transfer rates also showed lower RCSF/Serum values for PFOA and higher RCSF/Serum values for PFOS in patients, implying potential heterogeneous associations with cognitive function. The RCSF/Serum values for C4-C14 perfluoroalkyl carboxylates exhibited a U-shape trend with increasing chain length. Logistic regression analyses demonstrated that CSF PFOS levels were linked to the heightened risk of cognitive impairment [odds ratio: 3.22 (1.18-11.8)] but not for serum PFOS. Toxicity inference results based on the Comparative Toxicogenomics Database suggested that PFOS in CSF may have a greater potential to impair human cognition than other PFASs. Our results contribute to a better understanding of brain PFAS exposure and its potential impact on cognitive function.
Assuntos
Ácidos Alcanossulfônicos , Disfunção Cognitiva , Poluentes Ambientais , Fluorocarbonos , Humanos , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Ácidos Carboxílicos , PermeabilidadeRESUMO
Epidemiological studies have demonstrated the embryonic and developmental toxicity of plasticizers. Thus, understanding the in utero biotransformation and accumulation of plasticizers is essential to assessing their fate and potential toxicity in early life. In the present study, 311 infant hair samples and 271 paired meconium samples were collected at birth in Guangzhou, China, to characterize fetal exposure to legacy and emerging plasticizers and their metabolites. Results showed that most of the target plasticizers were detected in infant hair, with medians of 9.30, 27.6, and 0.145 ng/g for phthalate esters (PAEs), organic phosphate ester (OPEs), and alternative plasticizers (APs), and 1.44, 0.313, and 0.066 ng/g for the metabolites of PAEs, OPEs, and APs, respectively. Positive correlations between plasticizers and their corresponding primary metabolites, as well as correlations among the oxidative metabolites of bis(2-ethylhexyl) phthalate (DEHP) and 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH), were observed, indicating that infant hair retained the major phase-I metabolism of the target plasticizers. While no positive correlations were found in parent compounds or their primary metabolites between paired infant hair and meconium, significant positive correlations were observed among secondary oxidative metabolites of DEHP and DINCH in hair and meconium, suggesting that the primary metabolites in meconium come from hydrolysis of plasticizers in the fetus but most of the oxidative metabolites come from maternal-fetal transmission. The parent compound/metabolite ratios in infant hair showed a decreasing trend across pregnancy, suggesting in utero accumulation and deposition of plasticizers. To the best of our knowledge, this study is the first to report in utero exposure to both parent compounds and metabolites of plasticizers by using paired infant hair and meconium as noninvasive biomonitoring matrices and provides novel insights into the fetal biotransformation and accumulation of plasticizers across pregnancy.
Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Gravidez , Recém-Nascido , Feminino , Plastificantes , Mecônio/metabolismo , Dietilexilftalato/metabolismo , Dietilexilftalato/toxicidade , Ácidos Ftálicos/metabolismo , Cabelo/metabolismo , Organofosfatos , Biotransformação , Ésteres/metabolismo , Exposição Ambiental/análiseRESUMO
Liquid crystal monomers (LCMs) are emerging organic pollutants due to their potential persistence, toxicity, and bioaccumulation. This study first characterized the levels and compositions of 19 LCMs in organisms in the Pearl River Estuary (PRE), estimated their bioaccumulation and trophic transfer potential, and identified priority contaminants. LCMs were generally accumulated in organisms from sediment, and the LCM concentrations in all organisms ranged from 32.35 to 1367 ng/g lipid weight. The main LCMs in organisms were biphenyls and analogues (BAs) (76.6%), followed by cyanobiphenyls and analogues (CBAs) (15.1%), and the least were fluorinated biphenyls and analogues (FBAs) (11.2%). The most abundant LCM monomers of BAs, FBAs, and CBAs in LCMs in organisms were 1-(4-propylcyclohexyl)-4-vinylcyclohexane (15.1%), 1-ethoxy-2,3-difluoro-4-(4-(4-propylcyclohexyl) cyclohexyl) benzene (EDPBB, 10.1%), and 4'-propoxy-4-biphenylcarbonitrile (5.1%), respectively. The niche studies indicated that the PRE food web was composed of terrestrial-based diet and marine food chains. Most LCMs exhibited biodilution in the terrestrial-based diet and marine food chains, except for EDPBB and 4,4'-bis(4-propylcyclohexyl) biphenyl (BPCHB). The hydrophobicity, position of fluorine substitution of LCMs, and biological habits may be important factors affecting the bioaccumulation and trophic transfer of LCMs. BPCHB, 1-(prop-1-enyl)-4-(4-propylcyclohexyl) cyclohexane, and EDPBB were characterized as priority contaminants. This study first reports the trophic transfer processes and mechanisms of LCMs and the biomonitoring in PRE.
Assuntos
Monitoramento Ambiental , Estuários , Rios , Poluentes Químicos da Água , Rios/química , Cadeia Alimentar , Cristais Líquidos , AnimaisRESUMO
Tissue-to-blood partition coefficients (Ptb) are crucial for assessing the distribution of chemicals in organisms. Given the lack of experimental data and laborious nature of experimental methods, there is an urgent need to develop efficient predictive models. With the help of machine learning algorithms, i,e., random forest (RF), and artificial neural network (ANN), this study developed multi-task (MT) models that can simultaneously predict Ptb values for various mammalian tissues, including liver, muscle, brain, lung, and adipose. Single-task (ST) models using partial least squares regression, RF, and ANN algorithms for each endpoint were established for comparison. Overall, the performances of MT models were superior to those of ST models. The MT model using ANN algorithms showed the highest prediction accuracy with determination coefficients ranging from 0.704 to 0.886, root mean square errors between 0.223 and 0.410, and mean absolute errors ranging from 0.178 to 0.285 log units. Results showed that lipophilicity and polarizability of molecules significantly influence their partition behavior in organisms. Applicability domains (ADs) of the models were characterized by weighted molecular similarity density, and weighted inconsistency in molecular activities of structure-activity landscapes. When constrained by ADs, the models displayed enhanced predictive accuracy, making them valuable tools for the risk assessment and management of chemicals.
Assuntos
Algoritmos , Redes Neurais de Computação , Animais , Aprendizado de Máquina , Mamíferos , FígadoRESUMO
Surface particulates collected from the workshop floors of three major e-waste recycling sites (Taizhou, Qingyuan, and Guiyu) in China were analyzed for tetrabromobisphenol A/S (TBBPA/S) and their derivatives to investigate the environmental pollution caused by e-waste recycling activities. Mean concentrations of total TBBPA/S analogs in surface particulates were 31,471-116,059 ng/g dry weight (dw). TBBPA, TBBPA-BGE, and TBBPA-BDBPE were the most frequently detected in particulates with average concentration ranges of 17,929-78,406, 5601-15,842, and 5929-21,383 ng/g dw, respectively. Meanwhile, TBBPA, TBBPA-BGE, and TBBPA-BDBPE were the most abundant TBBPA/S analogs, accounting for around 96% of the total. The composition profiles of TBBPA/S analogs differed significantly among three e-waste sites. Similarly, principal component analysis uncovered different pollution patterns among different sites. The discrepancy in the profiles of TBBPA/S analogs largely relied on the e-waste types recycled in different areas. E-waste recycling led to the release of TBBPA/S analogs, and TBBPA/S analogs produced differentiation during migration from source (surface particulates) to nearby soil. More researches are necessary to find a definite relationship between pollution status and e-waste types and study differentiation behavior of TBBPA/S analogs in migration and diffusion from source to environmental medium.
Assuntos
Resíduo Eletrônico , Monitoramento Ambiental , Bifenil Polibromatos , Reciclagem , Bifenil Polibromatos/análise , China , Resíduo Eletrônico/análise , Material Particulado/análiseRESUMO
Organophosphorus flame retardants (PFRs) are a class of flame retardants and environmental pollutants with various biological effects. Recentstudies have evidenced activation of some PFRs by human CYP enzymes (including CYP2E1) for genotoxic effects. However, the activity of CYPs in fish species toward PFR metabolism remains unclear. This study was aimed on comparing the metabolism of triphenyl phosphate (TPHP) and 4-OH-TPHP in human, rat, and common carp, and the involvement of human CYP2E1 and its orthologs in the metabolism, by using fomepizole (4-MP, CYP2E1 inhibitor) as a modulator, in silico molecular docking and dynamics analyses. The rate of TPHP metabolism was apparently faster with human and rat, microsomes than with fish microsomes, the major metabolites were phosphodiester and hydroxylated phosphate, with 30-80â¯% of TPHP forming unidentified metabolites in the system of each species. 4-OH-TPHP was readily metabolized by both human and rat microsomes, whereas it was hardly metabolized in carp assays. Meanwhile, with 4-MP the transformation of TPHP to 4-OH-TPHP was enhanced in the human/rat systems while suppressed in the carp system. Moreover, the formation of unidentified metabolites in human and rat systems was mostly inhibited by 4-MP. Through molecular dynamics analysis TPHP and its primary metabolites showed high affinity for human and rat CYP2E1, as well as the carp ortholog (CYP2G1-like enzyme), however, the 4-OH-TPHP bond to the latter was too far from the heme to permit a biochemical reaction. This study suggests that the metabolism/activation of TPHP might be favored in mammals rather than carp, a fish species.
Assuntos
Carpas , Citocromo P-450 CYP2E1 , Retardadores de Chama , Simulação de Acoplamento Molecular , Organofosfatos , Animais , Carpas/metabolismo , Humanos , Ratos , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Hidroxilação , Organofosfatos/metabolismo , Organofosfatos/toxicidade , Especificidade da Espécie , Microssomos Hepáticos/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidadeRESUMO
As a nondestructive means of environmental monitoring, bird feathers have been used to analyze levels of per- and polyfluoroalkyl substances (PFASs) in specific environments. In this study, feather samples from 10 waterbird species around Poyang Lake were collected, and a pretreatment method for PFASs in feathers was optimized. The results showed that a combined cleaning method using ultrapure water and n-hexane effectively removed external PFASs. Twenty-three legacy and emerging PFASs were identified in the feathers of waterbirds, of which hexafluoropropylene oxides (HFPOs), chlorinated polyfluoroalkyl ether sulfonates (Cl-PFESAs), and sodium p-perfluorinated noneoxybenzene sulfonate (OBS) were reported for the first time, with their concentrations ranging from 0.060-2.4â¯ng·g-1 dw, 0.046-30â¯ng·g-1 dw, and lower than the method detection limit to 30â¯ng·g-1 dw, respectively. Compound- and species-specific bioaccumulation of PFASs was observed in the feathers of different waterbird species, suggesting that different PFAS types can be monitored through the selection of different species. Moreover, the concentrations of most PFCAs (except perfluorobutyric acid), perfluorooctane sulfonate (PFOS), and perfluorooctane sulfonamide (FOSA) were significantly positively correlated with δ15N (p < 0.05), while the concentrations of HFPOs, Cl-PFESAs, and OBS had significant positive correlations with δ13C. This indicates that the bioaccumulation of legacy and emerging PFASs in waterbird feathers is affected by their trophic level, feeding habits, and foraging area.
Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Lagos , Bioacumulação , Plumas/química , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/análise , Alcanossulfonatos , China , Éteres , Éter , Fluorocarbonos/análise , Monitoramento AmbientalRESUMO
Halogenated organic additives (HOAs) are used in plastic components of various electrical products, potentially causing detrimental effects on the eco-environment and humans. Besides reported HOAs, many unknown HOAs may be present in electrical product plastics and urgently require identification and characterization. This study performed nontarget analysis and comprehensive characterization of HOAs in three typical electrical product plastics by nontarget analysis using gas chromatography-negative chemical ionization-high-resolution mass spectrometry in association with in-house-developed chlorine/bromine-specific data-processing algorithms. A total of 674 formulas of HOAs were identified in the plastics dismantled from three electrical products, among which 166, 362, and 146 were organochlorines, organobromines, and mix-chlorinated/brominated organic compounds, respectively. The identified HOAs were semiquantified, and the total concentrations of HOAs in individual plastics were 445-1549 ng/g. Organobromines showed the most species and the highest abundances in all of the plastics, of which the abundances accounted for 86.6-98.0% of the total HOAs. Partial HOAs (209 formulas) were tentatively structurally elucidated, which were classified into 13 groups, i.e., halogenated alkyl phenoxyethyls (H-alkyl phenoxyethyls), H-alkylbenzenes, H-benzenes, H-bisphenol A (H-BPAs), H-dioxins, H-diphenyl ethers, H-biphenyls/terphenyls, H-polycyclic aromatic hydrocarbons, H-phenols, H-phenyl esters, H-phenyl-aldehydes/ketones, H-quinones, and an undefined group containing the HOAs such as dechlorane plus and chlordane. H-BPAs were the predominant HOAs in the plastics, showing relatively high concentrations (13-281 ng/g), and tetrabromobisphenol A was the most abundant H-BPA, with the concentrations of 9-196 ng/g. The comprehensive characterization results represent a holistic picture on the species features and abundance distributions of HOAs in electrical product plastics and provide an inventory of crucial HOAs worthy of concern. HOAs may migrate from plastics and release into the environment and are possibly an important source of halogenated organic pollutants in the environment, thus calling for further investigation and proper regulation.
Assuntos
Dioxinas , Poluentes Ambientais , Hidrocarbonetos Clorados , Humanos , Plásticos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hidrocarbonetos Clorados/análise , Poluentes Ambientais/análise , Dioxinas/análiseRESUMO
Approximately half of the global annual production of wastewater is released untreated into aquatic environments, which results in worldwide organic matter pollution in urban rivers, especially in highly populated developing countries. Nonetheless, information on microbial community assembly and assembly-driving processes in organic matter-polluted urban rivers remains elusive. In this study, a field study based on water and sediment samples collected from 200 organic matter-polluted urban rivers of 82 cities in China and Indonesia is combined with laboratory water-sediment column experiments. Our findings demonstrate a unique microbiome in these urban rivers. Among the community assembly-regulating factors, both organic matter and geographic conditions play major roles in determining prokaryotic and eukaryotic community assemblies, especially regarding the critical role of organic matter in regulating taxonomic composition. Using a dissimilarity-overlap approach, we found universality in the dynamics of water and sediment community assembly in organic matter-polluted urban rivers, which is distinctively different from patterns in eutrophic and oligotrophic waters. The prokaryotic and eukaryotic communities are dominated by deterministic and stochastic processes, respectively. Interestingly, water prokaryotic communities showed a three-phase cyclic succession of the community assembly process before, during, and after organic matter pollution. Our study provides the first large-scale and comprehensive insight into the prokaryotic and eukaryotic community assembly in organic matter-polluted urban rivers and supports their future sustainable management.
Assuntos
Microbiota , Rios , Cidades , Água , ChinaRESUMO
The spatiotemporal bioaccumulation, trophic transfer of antibiotics, and regulation of the phytoplankton biological pump were quantitatively evaluated in the Pearl River, South China. The occurrence of antibiotics in organisms indicated a significant spatiotemporal trend associated with the life cycle of phytoplankton. Higher temporal bioaccumulation factors (BAFs) were found in phytoplankton at the bloom site, while lower BAFs of antibiotics in organisms could not be explained by phytoplankton biomass dilution but were attributed to the low bioavailability of antibiotics, which was highly associated with distribution coefficients (R2 = 0.480-0.595, p < 0.05). Such lower BAFs of antibiotics in phytoplankton at higher biomass sites hampered the entry of antibiotics into food webs, and trophic dilutions were subsequently observed for antibiotics except for ciprofloxacin (CFX) and sulfamerazine (SMZ) at sites with blooms in all seasons. Distribution of CFX, norfloxacin (NFX), and sulfapyridine (SPD) showed further significant positive relationships with the plasma protein fraction (R2 = 0.275-0.216, p < 0.05). Both mean BAFs and trophic magnification factors (TMFs) were significantly negatively correlated with phytoplankton biomass (R2 = 0.661-0.741, p < 0.05). This study highlights the importance of the biological pump in the regulation of spatiotemporal variations in bioaccumulation and trophic transfer of antibiotics in anthropogenic-impacted eutrophic rivers in subtropical regions.
Assuntos
Antibacterianos , Rios , Bioacumulação , Ciprofloxacina , Proteínas de Membrana Transportadoras , FitoplânctonRESUMO
The atropisomeric enrichment of chiral polychlorinated biphenyls (PCBs) can trace the movement of PCBs through food webs, but it is a challenge to elucidate the prey uptake and stereoselective biotransformation of PCBs in different species. The present study investigated the concentrations and enantiomer fractions (EFs) of chiral PCBs in invertebrates, fishes, amphibians, and birds. Chiral PCB signature was estimated in total prey for different predators based on quantitative prey sources. The nonracemic PCBs in snakehead (Ophiocephalus argus) were mainly from prey. EFs of PCBs in amphibians and birds were mainly influenced by biotransformation, which showed enrichment of (+)-CBs 132 and 135/144 and different enantiomers of CBs 95 and 139/149. Biomagnification factors (BMFs) of chiral PCBs were higher than 1 for amphibians and passerine birds and lower than 1 for kingfisher (Alcedo atthis) and snakehead. BMFs were significantly correlated with EFs of chiral PCBs in predators and indicative of atropisomeric enrichment of PCBs across different species. Trophic magnification factors (TMFs) were higher in the riparian food web than in the aquatic food web because of the high metabolism capacity of chiral PCBs in aquatic predators. The results highlight the influences of species-specific prey sources and biotransformation on the trophic dynamics of chiral PCBs.
Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Cadeia Alimentar , Peixes/metabolismo , BiotransformaçãoRESUMO
Anaerobic bacteria transform aromatic halides through reductive dehalogenation. This dehalorespiration is catalyzed by the supernucleophilic coenzyme vitamin B12, cob(I)alamin, in reductive dehalogenases. So far, the underlying inner-sphere electron transfer (ET) mechanism has been discussed controversially. In the present study, all 36 chloro-, bromo-, and fluorobenzenes and full-size cobalamin are analyzed at the quantum chemical density functional theory level with respect to a wide range of theoretically possible inner-sphere ET mechanisms. The calculated reaction free energies within the framework of CoI···X (X = F, Cl, and Br) attack rule out most of the inner-sphere pathways. The only route with feasible energetics is a proton-coupled two-ET mechanism that involves a B12 side-chain tyrosine (modeled by phenol) as a proton donor. For 12 chlorobenzenes and 9 bromobenzenes with experimental data from Dehalococcoides mccartyi strain CBDB1, the newly proposed PC-TET mechanism successfully discriminates 16 of 17 active from 4 inactive substrates and correctly predicts the observed regiospecificity to 100%. Moreover, fluorobenzenes are predicted to be recalcitrant in agreement with experimental findings. Conceptually, based on the Bell-Evans-Polanyi principle, the computational approach provides novel mechanistic insights and may serve as a tool for predicting the energetic feasibility of reductive aromatic dehalogenation.
Assuntos
Chloroflexi , Chloroflexi/metabolismo , Fluorbenzenos/metabolismo , Prótons , Vitamina B 12/metabolismo , Biodegradação AmbientalRESUMO
Per- and polyfluoroalkyl acids (PFAAs) including polyfluoroalkyl carboxylic acids and polyfluoroalkyl sulfonic acids are a large category of crucial environmental pollutants of global concern. Besides known PFAAs, numerous unknown species may exist in the environment, urgently needing discovery and characterization. This study implemented nontarget analysis for a group of novel PFAA pollutants, viz., iodinated PFAAs (I-PFAAs) in wastewater from a fluorochemical manufacturing park by liquid chromatography-high-resolution mass spectrometry in combination with an iodine-specific data-processing algorithm. The algorithm took into account the diagnostic fragment iodine ion (I-) together with carbon and sulfur isotopologue distributions. In total, 18 I-PFAA formulas involving 21 congeners were identified. Semiquantification was conducted, and the total concentrations of I-PFAAs were 1.9-274.7 µg/L, indicating severe pollution of I-PFAAs in the wastewater. The determined concentrations along with predicted environmental behaviors and toxicities demonstrate that I-PFAAs merit further in-depth investigation. The analytical method including the instrumental analysis and data-processing algorithm can be extended to screening and identification of I-PFAAs in other matrices. Furthermore, the analysis results for the first time provide recognition on the occurrence, distribution features, and pollution status of I-PFAAs in the environment.
RESUMO
The effects of sex and pregnancy on the bioaccumulation and tissue distribution of legacy and emerging per- and polyfluoroalkyl substances (PFASs) in Chinese water snakes were investigated. The bioaccumulation factor of PFASs showed a positive correlation with their protein-water partition coefficients (log KPW), and steric hindrance effects were observed when the molecular volume was > 357 Å3. PFAS levels in females were significantly lower than those in males. The chemical composition of pregnant females was significantly different from that of non-pregnant females and males. The maternal transfer efficiencies of perfluorooctane sulfonic acid were higher than those of other PFASs, and a positive correlation between the maternal transfer potential and log KPW was observed for other PFASs. Tissues with high phospholipid content exhibited higher concentrations of ∑PFASs. Numerous physiological changes occurred in maternal organ systems during pregnancy, leading to the re-distribution of chemicals among different tissues. The change in tissue distribution of PFASs that are easily and not-so-easily maternally transferred was in the opposite direction. The extent of compound transfer from the liver to the egg determined tissue re-distribution during pregnancy.
Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Feminino , Gravidez , Humanos , Bioacumulação , Distribuição Tecidual , Poluentes Químicos da Água/análise , Água , Fluorocarbonos/análise , ChinaRESUMO
A trophic position (TP) model (TPmix model) that simultaneously considered trophic discrimination factor and ßGlu/Phe variations was developed in this study and was first applied to investigate the trophic transfer of halogenated organic pollutants (HOPs) in wetland food webs. The TPmix model characterized the structure of the wetland food web more accurately and significantly improved the reliability of TMF compared to the TPbulk, TPAAs, and TPsimmr models, which were calculated based on the methods of stable nitrogen isotope analysis of bulk, traditional AAs-N-CSIA, and weighted ßGlu/Phe, respectively. Food source analysis revealed three interlocking food webs (kingfisher, crab, and frogs) in this wetland. The highest HOP biomagnification capacities (TMFmix) were found in the kingfisher food web (0.24-82.0), followed by the frog (0.08-34.0) and crab (0.56-11.7) food webs. The parabolic trends of TMFmix across combinations of log KOW in the frog food web were distinct from those of aquatic food webs (kingfisher and crab), which may be related to differences in food web composition and HOP bioaccumulation behaviors between aquatic and terrestrial organisms. This study provides a new tool to accurately study the trophic transfer of contaminants in wetlands and terrestrial food webs with diverse species and complex feeding relationships.
Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Cadeia Alimentar , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Áreas Alagadas , Aminoácidos/metabolismo , Reprodutibilidade dos Testes , Peixes/metabolismo , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodosRESUMO
Poly- and perfluoroalkyl acids (PFAAs) are a large family of widespread contaminants of worldwide concern and well-known as "forever chemicals". Direct emission of PFAAs from the fluorochemical industry is a crucial source of PFAA pollutants in the environment. This study implemented nontarget analysis and comprehensive characterization for a category of new PFAA contaminants, i.e., iodinated PFAAs (IPFAAs), in fluorochemical industry wastewater and relevant contaminated river water by liquid chromatography-high-resolution mass spectrometry with a cascade precursor ion exclusion (PIE) strategy and in-house developed data extraction and processing algorithms. A total of 26 IPFAAs (including 2 isomers of an IPFAA) were found and identified with tentative molecular structures. Semiquantification of the IPFAAs was implemented, and the total concentrations of IPFAAs were 0.16-285.52 and 0.15-0.17 µg/L in wastewater and river water, respectively. The high concentrations in association with the predicted ecotoxicities and environmental behaviors demonstrate that these IPFAAs are worthy of more concern and further in-depth research. The cascade PIE strategy along with the data extraction and processing algorithms can be extended to nontarget analysis for other pollutants beyond IPFAAs. The nontarget identification and characterization outcomes provide new understanding on the environmental occurrence and pollution status of IPFAAs from a comprehensive perspective.
Assuntos
Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Águas Residuárias , Rios/química , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , ÁguaRESUMO
Factors affecting the trophic transfer of microplastics (MPs) in aquatic and terrestrial ecosystems remain to be clarified. Here, we determined the abundances of MPs in multiple terrestrial and aquatic species, including insects, snails, crustaceans, fishes, snakes, birds, and voles, from an abandoned e-waste recycling site. Approximately 80% of MPs were within the size range 20-50 µm. In wildlife, the MP abundances per individual and per body weight were found to be positively and negatively correlated with body weight, respectively. Herein, terrestrial vertebrates, primarily birds, exhibited more complex compositions of polymer types than other organisms owing to the wide foraging areas and diverse food sources. However, according to the MPs modeled and the observed results in bird food chains, MPs do not appear to be preferentially retained in the bird gastrointestinal tract. The species-specific polymer types identified indicate the influences of habitat on MP pollution in organisms, which is further supported by significant correlations between the abundance of MPs and δ13C in the terrestrial food web (p < 0.05). In the analyzed bird species, the low MP abundance detected in birds compared with the amount of food ingested indicates that MPs constitute a negligible factor in the bioaccumulation of chemical pollutants.