Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Curr Top Med Chem ; 21(6): 547-570, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33319660

RESUMO

Human tuberculosis (TB) is primarily caused by Mycobacterium tuberculosis (Mtb) that inhabits inside and amidst immune cells of the host with adapted physiology to regulate interdependent cellular functions with intact pathogenic potential. The complexity of this disease is attributed to various factors such as the reactivation of latent TB form after prolonged persistence, disease progression specifically in immunocompromised patients, advent of multi- and extensivelydrug resistant (MDR and XDR) Mtb strains, adverse effects of tailor-made regimens, and drug-drug interactions among anti-TB drugs and anti-HIV therapies. Thus, there is a compelling demand for newer anti-TB drugs or regimens to overcome these obstacles. Considerable multifaceted transformations in the current TB methodologies and molecular interventions underpinning hostpathogen interactions and drug resistance mechanisms may assist to overcome the emerging drug resistance. Evidently, recent scientific and clinical advances have revolutionised the diagnosis, prevention, and treatment of all forms of the disease. This review sheds light on the current understanding of the pathogenesis of TB disease, molecular mechanisms of drug-resistance, progress on the development of novel or repurposed anti-TB drugs and regimens, host-directed therapies, with particular emphasis on underlying knowledge gaps and prospective for futuristic TB control programs.


Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Antituberculosos/química , Tuberculose Extensivamente Resistente a Medicamentos/patologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tuberculose Resistente a Múltiplos Medicamentos/patologia
2.
Curr Drug Metab ; 21(10): 751-767, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32664837

RESUMO

The successful conversion of natural products (NPs) into lead compounds and novel pharmacophores has emboldened the researchers to harness the drug discovery process with a lot more enthusiasm. However, forfeit of bioactive NPs resulting from an overabundance of metabolites and their wide dynamic range have created the bottleneck in NP researches. Similarly, the existence of multidimensional challenges, including the evaluation of pharmacokinetics, pharmacodynamics, and safety parameters, has been a concerning issue. Advancement of technology has brought the evolution of traditional natural product researches into the computer-based assessment exhibiting pretentious remarks about their efficiency in drug discovery. The early attention to the quality of the NPs may reduce the attrition rate of drug candidates by parallel assessment of ADMET profiling. This article reviews the status, challenges, opportunities, and integration of advanced technologies in natural product research. Indeed, emphasis will be laid on the current and futuristic direction towards the application of newer technologies in early-stage ADMET profiling of bioactive moieties from the natural sources. It can be expected that combinatorial approaches in ADMET profiling will fortify the natural product-based drug discovery in the near future.


Assuntos
Produtos Biológicos , Descoberta de Drogas , Animais , Produtos Biológicos/farmacocinética , Produtos Biológicos/toxicidade , Humanos
3.
Curr Pharm Des ; 25(25): 2772-2787, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333098

RESUMO

Adenosine receptors (ARs) belongs to the family of G-protein coupled receptors (GPCR) that are responsible for the modulation of a wide variety of physiological functions. The ARs are also implicated in many diseases such as cancer, arthritis, cardiovascular and renal diseases. The adenosine A3 receptor (A3AR) has emerged as a potential drug target for the progress of new and effective therapeutic agents for the treatment of various pathological conditions. This receptor's involvement in many diseases and its validity as a target has been established by many studies. Both agonists and antagonists of A3AR have been extensively investigated in the last decade with the goal of developing novel drugs for treating diseases related to immune disorders, inflammation, cancer, and others. In this review, we shall focus on the medicinal chemistry of A3AR ligands, exploring the diverse chemical classes that have been projected as future leading drug candidates. Also, the recent advances in the therapeuetic applications of A3AR ligands are highlighted.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Antagonistas do Receptor A3 de Adenosina/farmacologia , Receptor A3 de Adenosina/metabolismo , Desenho de Fármacos , Humanos , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA