Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Environ Sci Technol ; 58(26): 11411-11420, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38887934

RESUMO

Antimony (Sb) isotopic fractionation is frequently used as a proxy for biogeochemical processes in nature. However, to date, little is known about Sb isotope fractionation in biologically driven reactions. In this study, Pseudomonas sp. J1 was selected for Sb isotope fractionation experiments with varying initial Sb concentration gradients (50-200 µM) at pH 7.2 and 30 °C. Compared to the initial Sb(III) reservoir (δ123Sb = 0.03 ± 0.01 ∼ 0.06 ± 0.01‰), lighter isotopes were preferentially oxidized to Sb(V). Relatively constant isotope enrichment factors (ε) of -0.62 ± 0.06 and -0.58 ± 0.02‰ were observed for the initial Sb concentrations ranging between 50 and 200 µM during the first 22 days. Therefore, the Sb concentration has a limited influence on Sb isotope fractionation during Sb(III) oxidation that can be described by a kinetically dominated Rayleigh fractionation model. Due to the decrease in the Sb-oxidation rate by Pseudomonas sp. J1, observed for the initial Sb concentration of 200 µM, Sb isotope fractionation shifted toward isotopic equilibrium after 22 days, with slightly heavy Sb(V) after 68 days. These findings provide the prospect of using Sb isotopes as an environmental tracer in the Sb biogeochemical cycle.


Assuntos
Antimônio , Isótopos , Oxirredução , Pseudomonas , Antimônio/metabolismo , Pseudomonas/metabolismo , Cinética , Fracionamento Químico
2.
Appl Environ Microbiol ; 84(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30266727

RESUMO

Chromate is one of the major anthropogenic contaminants on Earth. Leucobacter chromiiresistens is a highly chromate-resistant strain, tolerating chromate concentrations in LB medium of up to 400 mM. In response to chromate stress, L. chromiiresistens forms biofilms, which are held together via extracellular DNA. Inhibition of biofilm formation leads to drastically decreased chromate tolerance. Moreover, chromate is reduced intracellularly to the less-toxic Cr(III). The oxidation status and localization of chromium in cell aggregates were analyzed by energy-dispersive X-ray spectroscopy coupled to scanning transmission electron microscopy and X-ray absorption spectroscopy measurements. Most of the heavy metal is localized as Cr(III) at the cytoplasmic membrane. As a new cellular response to chromate stress, we observed an increased production of the carotenoid lutein. Carotenoid production could increase membrane stability and reduce the concentration of reactive oxygen species. Bioinformatic analysis of the L. chromiiresistens genome revealed several gene clusters that could enable heavy-metal resistance. The extreme chromate tolerance and the unique set of resistance factors suggest the use of L. chromiiresistens as a new model organism to study microbial chromate resistance.IMPORTANCE Chromate is a highly toxic oxyanion. Extensive industrial use and inadequate waste management has caused the toxic pollution of several field sites. Understanding the chromate resistance mechanisms that enable organisms to thrive under these conditions is fundamental to develop (micro)biological strategies and applications aiming at bioremediation of contaminated soils or waters. Potential detoxifying microorganisms are often not sufficient in their resistance characteristics to effectively perform, e.g., chromate reduction or biosorption. In this study, we describe the manifold strategies of L. chromiiresistens to establish an extremely high level of chromate resistance. The multitude of mechanisms conferring it make this organism suitable for consideration as a new model organism to study chromate resistance.


Assuntos
Actinomycetales/metabolismo , Cromatos/metabolismo , Actinomycetales/genética , Biodegradação Ambiental , Membrana Celular/genética , Membrana Celular/metabolismo , Cromo/metabolismo , Oxirredução , Espectroscopia por Absorção de Raios X
3.
Environ Sci Technol ; 49(9): 5390-8, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25885948

RESUMO

We investigated the speciation and extractability of Tl in soil developed from mineralized carbonate rock. Total Tl concentrations in topsoil (0-20 cm) of 100-1000 mg/kg are observed in the most affected area, subsoil concentrations of up to 6000 mg/kg Tl in soil horizons containing weathered ore fragments. Using synchrotron-based microfocused X-ray fluorescence spectrometry (µ-XRF) and X-ray absorption spectroscopy (µ-XAS) at the Tl L3-edge, partly Tl(I)-substituted jarosite and avicennite (Tl2O3) were identified as Tl-bearing secondary minerals formed by the weathering of a Tl-As-Fe-sulfide mineralization hosted in the carbonate rock from which the soil developed. Further evidence was found for the sequestration of Tl(III) into Mn-oxides and the uptake of Tl(I) by illite. Quantification of the fractions of Tl(III), Tl(I)-jarosite and Tl(I)-illite in bulk samples based on XAS indicated that Tl(I) uptake by illite was the dominant retention mechanism in topsoil materials. Oxidative Tl(III)uptake into Mn-oxides was less relevant, probably because the Tl loadings of the soil exceeded the capacity of this uptake mechanism. The concentrations of Tl in 10 mM CaCl2-extracts increased with increasing soil Tl contents and decreasing soil pH, but did not exhibit drastic variations as a function of Tl speciation. With respect to Tl in contaminated soils, this study provides first direct spectroscopic evidence for Tl(I) uptake by illite and indicates the need for further studies on the sorption of Tl to clay minerals and Mn-oxides and its impact on Tl solubility in soils.


Assuntos
Arsênio/análise , Carbonatos/análise , Sedimentos Geológicos/química , Minerais/química , Poluentes do Solo/análise , Solo/química , Tálio/análise , Ácidos/química , Poluição Ambiental/análise , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Oxalatos/química , Espectrometria por Raios X , Sulfatos/química , Suíça , Espectroscopia por Absorção de Raios X
4.
Environ Sci Technol ; 48(23): 13685-93, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25365451

RESUMO

Extremely arsenic-rich acid mine waters have developed by weathering of native arsenic in a sulfide-poor environment on the 10th level of the Svornost mine in Jáchymov (Czech Republic). Arsenic rapidly oxidizes to arsenolite (As2O3), and there are droplets of liquid on the arsenolite crust with high As concentration (80,000-130,000 mg·L(-1)), pH close to 0, and density of 1.65 g·cm(-1). According to the X-ray absorption spectroscopy on the frozen droplets, most of the arsenic is As(III) and iron is fully oxidized to Fe(III). The EXAFS spectra on the As K edge can be interpreted in terms of arsenic polymerization in the aqueous solution. The secondary mineral that precipitates in the droplets is kaatialaite [Fe(3+)(H2AsO4)3·5H2O]. Other unusual minerals associated with the arsenic lens are behounekite [U(4+)(SO4)2·4H2O], stepite [U(4+)(AsO3OH)2·4H2O], vysokýite [U(4+)[AsO2(OH)2]4·4H2O], and an unnamed phase (H3O)(+)2(UO2)2(AsO4)2·nH2O. The extremely low cell densities and low microbial biomass have led to insufficient amounts of DNA for downstream polymerase chain reaction amplification and clone library construction. We were able to isolate microorganisms on oligotrophic media with pH ∼ 1.5 supplemented with up to 30 mM As(III). These microorganisms were adapted to highly oligotrophic conditions which disabled long-term culturing under laboratory conditions. The extreme conditions make this environment unfavorable for intensive microbial colonization, but our first results show that certain microorganisms can adapt even to these harsh conditions.


Assuntos
Arsênio/análise , Mineração , Poluentes Químicos da Água/análise , Água/química , Trióxido de Arsênio , Arsenicais/química , República Tcheca , Meio Ambiente , Compostos Férricos/análise , Geologia , Água Subterrânea/química , Água Subterrânea/microbiologia , Ferro/química , Ferro/metabolismo , Minerais/análise , Minerais/química , Oxirredução , Óxidos/química , Poluentes Químicos da Água/química , Espectroscopia por Absorção de Raios X
5.
Environ Sci Technol ; 47(16): 9140-7, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23909875

RESUMO

Hematite (α-Fe2O3) is one of the most common iron oxides and a sink for the toxic metalloid arsenic. Arsenic can be immobilized by adsorption to the hematite surface; however, the incorporation of As in hematite was never seriously considered. In our study we present evidence that, besides adsorption, the incorporation of As into the hematite crystals can be of great relevance for As immobilization. With the coupling of nanoresolution techniques and X-ray absorption spectroscopy the presence of As (up to 1.9 wt %) within the hematite crystals could be demonstrated. The incorporated As(5+) displays a short-range order similar to angelellite-like clusters, epitaxially intergrown with hematite. Angelellite (Fe4As2O11), a triclinic iron arsenate with structural relations to hematite, can epitaxially intergrow along the (210) plane with the (0001) plane of hematite. This structural composite of hematite and angelellite-like clusters represents a new immobilization mechanism and potentially long-lasting storage facility for As(5+) by iron oxides.


Assuntos
Arsênio/química , Poluentes Ambientais/química , Compostos Férricos/química , Microscopia Eletrônica de Transmissão , Espectroscopia por Absorção de Raios X
6.
J Hazard Mater ; 459: 132212, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37579718

RESUMO

Colloids may play an important role in the geochemical cycle of antimony (Sb). However, the controlling behaviors of colloids on Sb fate in contaminated groundwater are not available. To investigate the effects of colloids on Sb mobility, groundwater samples from Xikuangshan Sb Mine's two main aquifers (the D3s2 aquifer and the D3x4 aquifer) were successively (ultra)filtered through progressively decreasing pore sizes (0.45 µm, 100 kDa, 50 kDa and 5 kDa). The results showed that 0.1-84.1% of Sb was adsorbed or carried by colloids, which corresponded to Sb concentration ranging between 0 and 2973 µg/L in the colloids (0.45 µm - 5 kDa). In both aquifers, Sb was closely associated with organic colloids (r = 0.72 p < 0.05 for the D3x4 aquifer, r = 0.94 p < 0.01 for the D3s2 aquifer). Parallel factor analysis of the three-dimensional fluorescence spectra determined that the protein-like substances in the D3x4 aquifer and the humus-like substances in the D3s2 aquifer controlled Sb behavior. X-ray absorption spectroscopy confirmed Sb complexing with organic substances. Competitive adsorption of As and Sb suppressed the complexation of colloids with Sb, particularly in the D3x4 aquifer (r = -0.71, p < 0.05). Sb mobility was also influenced by the redox of the groundwater system. As the oxidation-reduction potential and dissolved oxygen increased, Sb in the colloidal fractions decreased. These findings provide new insights into the mechanisms involved in Sb fate affected by colloids, establishing the theoretical basis for developing effective Sb and even metalloid pollution remediation strategies.

7.
Environ Sci Pollut Res Int ; 29(58): 87490-87508, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35809167

RESUMO

In northern Tunisia, Sidi Driss sulfide ore valorization had produced a large waste amount. The long tailings exposure period and in situ minerals interactions produced an acid mine drainage (AMD) which contributed to a strong increase in the mobility and migration of huge heavy metal (HM) quantities to the surrounding soils. In this work, the soil mineral proportions, grain sizes, physicochemical properties, SO42- and S contents, and Machine Learning (ML) algorithms such as the Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) models were used to predict the soil HM quantities transferred from Sidi-Driss mine drainage to surrounding soils. The results showed that the HM concentrations had significantly increased with the increase of decomposition and oxidation of galena, marcasite, pyrite, and sphalerite-marcasite and Fe-oxide-hydroxides quantities and the sulfate dissolution (marked with SO42- ions increase) that produced the decreased soil pH. Compared to SVM, and ANN models outputs, the RF model that revealed higher R2val, RPD, RPIQ, and lower error indices had satisfactorily predicted the soil HM accumulation coming from the AMD environment.


Assuntos
Metais Pesados , Poluentes do Solo , Tunísia , Monitoramento Ambiental/métodos , Mineração , Metais Pesados/análise , Ácidos/análise , Solo , Poluentes do Solo/análise , Minerais/análise , Aprendizado de Máquina
8.
Environ Sci Technol ; 45(11): 4726-32, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21557572

RESUMO

Hydrous ferric oxide (HFO) is an X-ray amorphous compound with a high affinity for anions under strongly or mildly acidic conditions. Because of the usually small particle size of HFO, the adsorption capacity is high and adsorption may significantly impact the thermodynamic properties of such materials. Here we show that adsorption of phosphate and arsenate stabilizes HFO by experimental determination of enthalpies of formation (by acid-solution calorimetry) and estimates of standard entropies for six phosphate- or arsenate-enriched HFO samples. At pH values lower than ∼5, the phosphate-doped HFO is not only less soluble than ferrihydrite (anion-free HFO) but also crystalline FeOOH polymorphs feroxyhyte and lepidocrocite. The arsenate-doped HFO is also stabilized with respect to the ferrihydrite. Phosphate availability in soils can be controlled by the phosphate-enriched HFO which is many orders of magnitude less soluble than apatite or crystalline Fe(III) phosphates, for example strengite (FePO(4)·2H(2)O). Thermodynamic dissolution models for scorodite (FeAsO(4)·2H(2)O) and As-enriched HFO show that under mildly acidic or circumneutral conditions, scorodite dissolves, As-HFO precipitates, and a substantial amount of As(V) is released into the aqueous solution (at pH 7, log m(As) ∼ -2.5). The data presented in this paper can be used to model the equilibrium concentration of Fe(III), P(V), or As(V) in soil solutions or in natural or anthropogenic sediments polluted by arsenic.


Assuntos
Compostos Férricos/química , Poluentes do Solo/química , Adsorção , Arseniatos/química , Modelos Químicos , Fosfatos/química , Termodinâmica
9.
IUCrJ ; 8(Pt 1): 116-123, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33520247

RESUMO

Kaatialaite mineral Fe[AsO2(OH)2]5H2O from Jáchymov, Czech Republic forms white aggregates of needle-shaped crystals with micrometric size. Its structure at ambient temperature has already been reported but hydrogen atoms could not be identified from single-crystal X-ray diffraction. An analysis using 3D electron diffraction at low temperature brings to light the hydrogen positions and the existence of hydrogen disorder. At 100 K, kaatialaite is described in a monoclinic unit cell of a = 15.46, b = 19.996, c = 4.808 Å, ß = 91.64° and V = 1485.64 Å3 with space group P21/n. The hydrogen sites were revealed after refinements both considering the dynamical effects and ignoring them. The possibility to access most of the hydrogen positions, including partially occupied ones among heavy atoms, from the kinematical refinement is due to the recent developments in the analysis of 3D electron data. The hydrogen bonding observed in kaatialaite provides examples of H2O configurations that have not been observed before in the structures of oxysalts with the presence of unusual inverse transformer H2O groups.

10.
Chimia (Aarau) ; 64(10): 699-704, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21138157

RESUMO

Acidic and metal-rich waters produced by sulfide decomposition at mining sites are termed acid mine drainage (AMD). They precipitate a number of minerals, very often sulfates. The recent advances in thermodynamic properties and crystallography of these sulfates are reviewed here. There is a reasonable amount of data for the divalent (Mg, Ni, Co, Fe(2+), Cu, Zn) sulfates and these data may be combined with and optimized by temperature-relative humidity brackets available in the literature. For the sulfates with Fe(3+), most data exist for jarosite; for other minerals and phases in this system, a few calorimetric studies were reported. No data whatsoever are available for the Fe(2+)-Fe(3+) sulfates. A significant advance is the development of the Pitzer model for Fe(3+)sulfate solutions and its confrontation with the available thermodynamic and solubility data. In summary, our knowledge about the thermodynamic properties of the AMD sulfates is unsatisfactory and fragmented.

11.
RSC Adv ; 11(1): 374-379, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35423064

RESUMO

The double sulfates with the general formula Na2M2+(SO4)2·nH2O (M = Mg, Mn, Co, Ni, Cu, Zn, n = 2 or 4) are being considered as materials for electrodes in sodium-based batteries or as precursors for such materials. These sulfates belong structurally to the blödite (n = 4) and kröhnkite (n = 2) family and the M cations considered in this work were Mg, Mn, Co, Ni, Cu, Zn. Using a combination of calorimetric methods, we have measured enthalpies of formation and entropies of these phases, calculated their Gibbs free energies (Δf G°) of formation and evaluated their stability with respect to Na2SO4, simple sulfates MSO4·xH2O, and liquid water, if appropriate. The Δf G° values (all data in kJ mol-1) are: Na2Ni(SO4)2·4H2O: -3032.4 ± 1.9, Na2Mg(SO4)2·4H2O: -3432.3 ± 1.7, Na2Co(SO4)2·4H2O: -3034.4 ± 1.9, Na2Zn(SO4)2·4H2O: -3132.6 ± 1.9, Na2Mn(SO4)2·2H2O: -2727.3 ± 1.8. The data allow the stability of these phases to be assessed with respect to Na2SO4, MSO4·mH2O and H2O(l). Na2Ni(SO4)2·4H2O is stable with respect to Na2SO4, NiSO4 and H2O(l) by a significant amount of ≈50 kJ mol-1 whereas Na2Mn(SO4)2·2H2O is stable with respect to Na2SO4, MnSO4 and H2O(l) only by ≈25 kJ mol-1. The values for the other blödite-kröhnkite phases lie in between. When considering the stability with respect to higher hydrates, the stability margin decreases; for example, Na2Ni(SO4)2·4H2O is still stable with respect to Na2SO4, NiSO4·4H2O and H2O(l), but only by ≈20 kJ mol-1. Among the phases studied and chemical reactions considered, the Na-Ni phase is the most stable one, and the Na-Mn, Na-Co, and Na-Cu phases show lower stability.

12.
Chemosphere ; 247: 125972, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32069734

RESUMO

Wildfires can be responsible for significant mercury (Hg) emissions especially in contaminated areas. Here, we investigated the Hg distribution in topsoils and vegetation samples and temperature-dependent Hg mobilization from biomass-rich topsoils collected near a copper (Cu) smelter in Tsumeb (semi-arid Namibia), where Hg-rich Cu concentrates are processed. The thermo-desorption (TD) experiments conducted on representative biomass-rich topsoils (3.9-7.7 mg Hg/kg) indicated that more than 91% of the Hg was released at ∼340 °C, which corresponds to the predominant grassland-fire conditions. The mineralogical investigation indicated that the Hg comes mainly from the deposited smelter emissions because no distinct Hg-rich microparticles corresponding to the windblown dust from the nearby disposal sites of the technological materials (concentrates, slags, tailings) were found. A comparison with the TD curves of the Hg reference compounds confirmed that the Hg in the biomass-rich topsoils occurs as a mixture of Hg bound to the organic matter and metacinnabar (black HgS), which exhibits similarities with the TD pattern of smelter flue dust residue. Despite the installation of a sulfuric acid plant in the smelter in 2015 and a calculated drop in the estimated Hg emissions (from 1301 ± 457 kg/y for the period 2004-2015 to 67 ± 5 kg/y after 2015), the Hg legacy pool in the smelter surroundings can potentially be re-emitted back to the atmosphere by wildfire. Using the Hg spatial distribution data in the area (184 km2), the estimates indicate that up to 303 kg and 1.3 kg can be remobilized from the topsoils and vegetation, respectively.


Assuntos
Poluição Ambiental , Mercúrio/análise , Poluentes do Solo/análise , Incêndios Florestais , Biomassa , Cobre , Poeira/análise , Monitoramento Ambiental , Temperatura Alta/efeitos adversos
13.
Environ Microbiol ; 11(9): 2329-38, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19519871

RESUMO

Here we describe a novel bacterial community that is embedded in a matrix of carbohydrates and bio/geochemical products of pyrite (FeS(2)) oxidation. This community grows in stalactite-like structures--snottites--on the ceiling of an abandoned pyrite mine at pH values of 2.2-2.6. The aqueous phase in the matrix contains 200 mM of sulfate and total iron concentrations of 60 mM. Micro-X-ray diffraction analysis showed that jarosite [(K,Na,H(3)O)Fe(3)(SO(4))(2)(OH)(6)] is the major mineral embedded in the snottites. X-ray absorption near-edge structure experiments revealed three different sulfur species. The major signal can be ascribed to sulfate, and the other two features may correspond to thiols and sulfoxides. Arabinose was detected as the major sugar component in the extracellular polymeric substance. Via restriction fragment length polymorphism analysis, a community was found that mainly consists of iron oxidizing Leptospirillum and Ferrovum species but also of bacteria that could be involved in dissimilatory sulfate and dissimilatory iron reduction. Each snottite can be regarded as a complex, self-contained consortium of bacterial species fuelled by the decomposition of pyrite.


Assuntos
Bactérias/classificação , Ferro/metabolismo , Sulfetos/metabolismo , Bactérias/metabolismo , Biodiversidade , Genes Bacterianos , Ferro/química , Mineração , Oxirredução , Filogenia , Sulfetos/química
14.
Sci Total Environ ; 407(5): 1669-82, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19117594

RESUMO

Shooting ranges represent sites heavily polluted by Pb, Sb, Cu, Ni, and Zn, which are released during the weathering of bullets. The pristine bullets are made of a Pb-Sb core, Fe mantle, and minor amounts of Cu, Ni, and Zn in an interlayer between the core and mantle. At two selected sampling sites (Losone and Lucerne, both in Switzerland), corroding bullets were collected to determine the sinks of Sb within the weathering crust of the bullets. Bulk Sb concentrations in the crust were found to be as high as 1.3 wt.%. The oxalate-extractable fraction of Fe showed that the amorphous Fe oxides (e.g., ferrihydrite) prevail over goethite and lepidocrocite, which were identified by bulk X-ray diffraction experiments. Crystalline Pb phases are litharge (only found by X-ray diffraction) and cerussite, which result from weathering of the Pb core. No distinct Sb minerals were identified by X-ray diffraction. Investigations with electron microprobe (EMP) showed that Sb is mostly accumulated in those regions in the weathering crust where there is also a high concentration of Fe. In the weathering crust from Losone, such Fe-rich regions with Sb are represented by material that cements or rims silicate mineral grains. The cement was identified as lepidocrocite by micro-Raman analysis. At Lucerne, Sb is found in Fe-oxide aggregates, in sawdust particles where it may be bound to organic matter, or in aggregates enriched in Pb and depleted in Fe. Bulk EXAFS experiments suggested that the Fe oxides are the most important sink for Sb. Our modelling of Sb next-nearest neighbours suggests two types of inner-sphere complexes on the surfaces of Fe oxides. These are edge- and corner-sharing adsorption complexes. Hence, the predominant sink of Sb in the weathering crust of the bullets at the selected shooting ranges is Fe oxides, amorphous or crystalline.

15.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 5): 856-862, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28980989

RESUMO

Parabutlerite, orthorhombic FeIIISO4(OH)·2H2O, has been reinvestigated using single-crystal X-ray diffraction. The structure of parabutlerite is commensurately modulated, with a = 20.0789 (8), b = 7.4024 (7), c = 7.2294 (15) Šand q = 0.4b*. The superstructure has been determined, using a superspace approach, as having the superspace group Pnma(0ß0)s0s and t0 = 1/20, and refined to R = 0.0295 for 2392 main reflections with I > 3σ(I). The structure consists of infinite chains of Fe octahedra that are linked via vertices (OH groups); these chains are encased from both sides by SO4 tetrahedra. The displacive modulation of atoms in parabutlerite is connected with a tilt of the chains around the b axis towards the adjacent chains due to the accommodation of an energetically more favorable hydrogen-bond geometry.

16.
Environ Sci Pollut Res Int ; 24(16): 14455-14462, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28444564

RESUMO

The development of mycorrhized pine seedlings grown in the presence of lead was assessed in order to investigate how higher plants can tolerate lead pollution in the environment. Examination with scanning electron microscopy (SEM) revealed that Pb uptake was prominent in the roots, while a smaller amount was found in pine needles, which requires symplastic uptake and root-to-shoot transfer. Lead was concentrated in nanocrystalline aggregates attached to the cell wall and, according to elemental microanalyses, is associated with phosphorus and chlorine. The identification of the nanocrystalline phase in roots and needles was performed by transmission electron microscopy (TEM) and synchrotron X-ray micro-diffraction (µ-XRD), revealing the presence of pyromorphite, Pb5[PO4]3(Cl, OH), in both roots and needles. The extracellular embedding of pyromorphite within plant cell walls, featuring an indented appearance of the cell wall due to a callus-like outcrop of minerals, suggests a biogenic origin. This biomineralization is interpreted as a defense mechanism of the plant against lead pollution.


Assuntos
Chumbo/toxicidade , Minerais/metabolismo , Micorrizas/metabolismo , Fosfatos/metabolismo , Pinus sylvestris/microbiologia , Poluentes do Solo/toxicidade , Micorrizas/efeitos dos fármacos , Pinus , Raízes de Plantas
17.
Environ Sci Pollut Res Int ; 23(8): 7308-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26681328

RESUMO

Historical slags from the past Fe and Cu-Co production were investigated in order to evaluate either their potential for utilization or their long-term environmental risk for unsupervised old smelting areas. Here, we studied ferrous slags produced during the recovery of Fe from siderite-Cu ores in Slovakia and two different types of non-ferrous slags produced during the recovery of Cu and Co from Kupferschiefer ores in Germany. The glassy character, rare occurrence of primary silicate phases, and the lack of secondary phases in Cu slags indicate their stability for a prolonged period of time. Electron microprobe analytical work showed that the metals and metalloids (Cu, Co, Fe, Zn, Pb, As) are largely encased in droplets of matte and metal alloys and remain protected by the glassy matrix with its low weathering rate. Fe and Co slags are composed of high-temperature silicates such as wollastonite, cristobalite, as well as olivine, feldspar, quartz, leucite, pyroxene, and pyroxenoids. The presence of secondary phases attests to a certain degree metal release owing to weathering. Assuming minimal contents of metals in slags after a treatment with dilute H2SO4, slags could be used as pozzolanas for addition to cement.


Assuntos
Meio Ambiente , Metais/análise , Reciclagem , Poluentes do Solo/análise , Gerenciamento de Resíduos , Monitoramento Ambiental , Alemanha , Medição de Risco , Eslováquia
18.
Sci Total Environ ; 557-558: 192-203, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26994806

RESUMO

The mineralogical composition of mining wastes deposited in countless dumps around the world is the key factor that controls retention and release of pollutants. Here we report a multi-method data set combining mineralogical (X-ray diffraction, electron microprobe and Raman microspectrometry) and geochemical (sequential extraction and pore water analysis) methods to resolve As mobility in two 50-years-old mining waste dumps. Originally, all of the As in the mining wastes selected for the study was present as arsenopyrite and with time it has been replaced by secondary As phases. At Jedová jáma mining area, the most of As precipitated as X-ray amorphous ferric arsenate (HFA). Arsenic is also accumulated in the scorodite and Fe (hydr)oxide (with up to 3.2wt.% As2O5) that is particularly represented by hematite. Mining wastes at Dlouhá Ves contain only trace amount of scorodite. Arsenic is primarily bound to Pb-jarosite and Fe (hydr)oxides (especially goethite) with up to 1.6 and 1.8wt.% As2O5, respectively. The pore water collected after rainfall events indicated high concentrations of As (~4600µg·L(-1)) at Jedová jáma, whereas aqueous As at Dlouhá Ves was negligible (up to 1.5µg·L(-1)). Highly mobile As at Jedová jáma is attributed to the dissolution of HFA and simultaneous precipitation of Fe (hydr)oxides under mildly acidic conditions (pH~4.4); immobile As at Dlouhá Ves is due to the efficient adsorption on the Fe (hydr)oxides and hydroxosulfates under acidic pH of ~2.8. Taken together, As mobility in the ferric arsenates-containing mining wastes may significantly vary. These wastes must be kept under acidic conditions or with high aqueous Fe(III) concentrations to prevent the release of As from incongruent dissolution of ferric arsenates.

19.
ISME J ; 7(9): 1725-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23619304

RESUMO

Biofilms can provide a number of different ecological niches for microorganisms. Here, a multispecies biofilm was studied in which pyrite-oxidizing microbes are the primary producers. Its stability allowed not only detailed fluorescence in situ hybridization (FISH)-based characterization of the microbial population in different areas of the biofilm but also to integrate these results with oxygen and pH microsensor measurements conducted before. The O2 concentration declined rapidly from the outside to the inside of the biofilm. Hence, part of the population lives under microoxic or anoxic conditions. Leptospirillum ferrooxidans strains dominate the microbial population but are only located in the oxic periphery of the snottite structure. Interestingly, archaea were identified only in the anoxic parts of the biofilm. The archaeal community consists mainly of so far uncultured Thermoplasmatales as well as novel ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganism) species. Inductively coupled plasma analysis and X-ray absorption near edge structure spectra provide further insight in the biofilm characteristics but revealed no other major factors than oxygen affecting the distribution of bacteria and archaea. In addition to catalyzed reporter deposition FISH and oxygen microsensor measurements, microautoradiographic FISH was used to identify areas in which active CO2 fixation takes place. Leptospirilla as well as acidithiobacilli were identified as primary producers. Fixation of gaseous CO2 seems to proceed only in the outer rim of the snottite. Archaea inhabiting the snottite core do not seem to contribute to the primary production. This work gives insight in the ecological niches of acidophilic microorganisms and their role in a consortium. The data provided the basis for the enrichment of uncultured archaea.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Biofilmes , Ferro/metabolismo , Consórcios Microbianos/fisiologia , Oxigênio/metabolismo , Sulfetos/metabolismo , Aerobiose , Anaerobiose , Archaea/genética , Bactérias/genética , Ciclo do Carbono , Concentração de Íons de Hidrogênio , Mineração , Filogenia , RNA Ribossômico 16S/genética
20.
Astrobiology ; 12(11): 1042-54, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23095098

RESUMO

The enthalpies of formation of synthetic MgSO(4)·4H(2)O (starkeyite) and MgSO(4)·3H(2)O were obtained by solution calorimetry at T=298.15 K. The resulting enthalpies of formation from the elements are [Formula: see text] (starkeyite)=-2498.7±1.1 kJ·mol(-1) and [Formula: see text] (MgSO(4)·3H(2)O)=-2210.3±1.3 kJ·mol(-1). The standard entropy of starkeyite was derived from low-temperature heat capacity measurements acquired with a physical property measurement system (PPMS) in the temperature range 5 K

Assuntos
Sulfato de Magnésio/química , Varredura Diferencial de Calorimetria , Entropia , Cinética , Reprodutibilidade dos Testes , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA