Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev E ; 106(6-1): 064105, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36671183

RESUMO

We study the thermodynamic properties of the magnetic dipolar spin ice on a 2D pentagonal Cairo lattice by using the numerical Metropolis and the complete enumeration methods. We use the model of point Ising-like dipoles considering long-range interactions with up to 100 nearest neighbors and with periodic boundary conditions. There are two explicit peaks both in the temperature behavior of the heat capacity and in the magnetic susceptibility. The low-temperature peak is caused only by long-range interactions and is not present in the model where each dipole interacts only with four nearest neighbors. The height of the peak depends logarithmically on the quantity of dipoles, which indicates a phase transition. The nature of the low-temperature phase transition is related to the transformation from order to disorder in orthogonal sublattices while maintaining the spin ice state and the spin ice rule in the sublattice of crosses. The high-temperature heat capacity peak is associated with the melting of spin ice, i.e., with the crossover from spin ice to paramagnetic chaos. Its height is constant and does not depend on the quantity of dipoles. It is shown that the choice of the radius of the dipole-dipole interaction has a significant effect on the statistical properties of the model. The model may even show the appearance of the long-range order and the phase transition in the case of long-range interaction or its absence in the case of short-range interaction.


Assuntos
Temperatura Baixa , Gelo , Análise por Conglomerados , Temperatura Alta , Transição de Fase
2.
Biology (Basel) ; 10(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34571701

RESUMO

A compact accelerator-based neutron source has been proposed and created at the Budker Institute of Nuclear Physics in Novosibirsk, Russia. An original design tandem accelerator is used to provide a proton beam. The neutron flux is generated as a result of the 7Li(p,n)7Be threshold reaction using the solid lithium target. A beam shaping assembly is applied to convert this flux into a beam of epithermal neutrons with characteristics suitable for BNCT. The BNCT technique is being tested in in vitro and in vivo studies, and dosimetry methods are being developed. Currently, the BNCT technique has entered into clinical practice in the world: after successful clinical trials, two clinics in Japan began treating patients, and four more BNCT clinics are ready to start operating. The neutron source proposed at the Budker Institute of Nuclear Physics served as a prototype for a facility created for a clinic in Xiamen (China). It is planned to equip the National Medical Research Center of Oncology (Moscow, Russia) and National Oncological Hadron Therapy Center (Pavia, Italy) with the same neutron sources. Due to the impending use of an accelerator neutron source for treating patients, the validation of the neutron yield of the 7Li(p,n)7Be reaction in lithium metal targets is required. The theoretical neutron yield has not been evaluated experimentally so far.

3.
Phys Rev E ; 103(4-1): 042129, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005950

RESUMO

To investigate the influence of geometric frustration on the properties of low-energy configurations of systems of ferromagnetic nanoislands located on the edges of the Cairo lattice, the model of interacting Ising-like magnetic dipoles is used. By the method of complete enumeration, the densities of states of the Cairo pentagonal lattices of a finite number of Ising-like point dipoles are calculated. The calculated ground and low-energy states for systems with a small number of dipoles can be used to solve the problem of searching for the ground states in a system with a relatively large number of dipoles. It is shown that the ground-state energy of the Cairo pentagonal lattices exhibits nonmonotonic behavior on one of the lattice parameters. The lattice parameters can be used to control the degree of geometric frustration. For the studied lattices of a finite number of Ising dipoles on the Cairo lattice in the ground-state configurations, a number of closed pentagons is observed, which are different from the obtained maximum closed pentagons. The magnetic order in the ground-state configurations obeys the ice rule and the quasi-ice rules.

4.
Biology (Basel) ; 10(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919153

RESUMO

A compact accelerator-based neutron source has been proposed and created at the Budker Institute of Nuclear Physics in Novosibirsk, Russia. An original design tandem accelerator is used to provide a proton beam. The proton beam energy can be varied within a range of 0.6-2.3 MeV, keeping a high-energy stability of 0.1%. The beam current can also be varied in a wide range (from 0.3 mA to 10 mA) with high current stability (0.4%). In the device, neutron flux is generated as a result of the 7Li(p,n)7Be threshold reaction. A beam-shaping assembly is applied to convert this flux into a beam of epithermal neutrons with characteristics suitable for BNCT. A lot of scientific research has been carried out at the facility, including the study of blistering and its effect on the neutron yield. The BNCT technique is being tested in in vitro and in vivo studies, and the methods of dosimetry are being developed. It is planned to certify the neutron source next year and conduct clinical trials on it. The neutron source served as a prototype for a facility created for a clinic in Xiamen (China).

5.
Pharmaceutics ; 13(9)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34575566

RESUMO

Boron neutron capture therapy (BNCT) is an anticancer modality realized through 10B accumulation in tumor cells, neutron irradiation of the tumor, and decay of boron atoms with the release of alpha-particles and lithium nuclei that damage tumor cell DNA. As high-LET particle release takes place inside tumor cells absorbed dose calculations are difficult, since no essential extracellular energy is emitted. We placed gold nanoparticles inside tumor cells saturated with boron to more accurately measure the absorbed dose. T98G cells accumulated ~50 nm gold nanoparticles (AuNPs, 50 µg gold/mL) and boron-phenylalanine (BPA, 10, 20, 40 µg boron-10/mL), and were irradiated with a neutron flux of 3 × 108 cm-2s-1. Gamma-rays (411 keV) emitted by AuNPs in the cells were measured by a spectrometer and the absorbed dose was calculated using the formula D = (k × N × n)/m, where D was the absorbed dose (GyE), k-depth-related irradiation coefficient, N-number of activated gold atoms, n-boron concentration (ppm), and m-the mass of gold (g). Cell survival curves were fit to the linear-quadratic (LQ) model. We found no influence from the presence of the AuNPs on BNCT efficiency. Our approach will lead to further development of combined boron and high-Z element-containing compounds, and to further adaptation of isotope scanning for BNCT dosimetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA