Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Struct Biol ; 216(3): 108109, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964522

RESUMO

Parkinson's disease (PD) is a category of neurodegenerative disorders (ND) that currently lack comprehensive and definitive treatment strategies. The etiology of PD can be attributed to the presence and aggregation of a protein known as α-synuclein. Researchers have observed that the application of an external electrostatic field holds the potential to induce the separation of the fibrous structures into peptides. To comprehend this phenomenon, our investigation involved simulations conducted on the α-synuclein peptides through the application of Molecular Dynamics (MD) simulation techniques under the influence of a 0.1 V/nm electric field. The results obtained from the MD simulations revealed that in the presence of external electric field, the monomer and oligomeric forms of α-synuclein are experienced significant conformational changes which could prevent them from further aggregation. However, as the number of peptide units in the model system increases, forming trimers and tetramers, the stability against the electric field also increases. This enhanced stability in larger aggregates indicates a critical threshold in α-synuclein assembly where the electric field's effectiveness in disrupting the aggregation diminishes. Therefore, our findings suggest that early diagnosis and intervention could be crucial in preventing PD progression. When α-synuclein predominantly exists in its monomeric or dimeric form, applying even a lower electric field could effectively disrupt the initial aggregation process. Inhibition of α-synuclein fibril formation at early stages might serve as a viable solution to combat PD by halting the formation of more stable and pathogenic α-synuclein fibrils.


Assuntos
Simulação de Dinâmica Molecular , Doença de Parkinson , Estabilidade Proteica , Eletricidade Estática , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Humanos , Agregados Proteicos , Conformação Proteica
2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047286

RESUMO

The self-association of amylogenic proteins to the fibril form is considered a pivotal factor in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). PD causes unintended or uncontrollable movements in its common symptoms. α-synuclein is the major cause of PD development and thus has been the main target of numerous studies to suppress and sequester its expression or effectively degrade it. Nonetheless, to date, there are no efficient and proven ways to prevent pathological protein aggregation. Recent investigations proposed applying an external electric field to interrupt the fibrils. This method is a non-invasive approach that has a certain benefit over others. We performed molecular dynamics (MD) simulations by applying an electric field on highly toxic fibrils of α-synuclein to gain a molecular-level insight into fibril disruption mechanisms. The results revealed that the applied external electric field induces substantial changes in the conformation of the α-synuclein fibrils. Furthermore, we show the threshold value for electric field strength required to completely disrupt the α-synuclein fibrils by opening the hydrophobic core of the fibril. Thus, our findings might serve as a valuable foundation to better understand molecular-level mechanisms of the α-synuclein fibrils disaggregation process under an applied external electric field.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Simulação de Dinâmica Molecular , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/complicações , Amiloide/metabolismo
3.
Sci Rep ; 14(1): 22246, 2024 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-39333193

RESUMO

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder, impacting millions of individuals worldwide. Among its defining characteristics is the accumulation of senile plaques within the brain's gray matter, formed through the self-assembly of misfolded proteins contributing to the progressive symptoms of AD. This study investigates a polymorphic Aß fibril under static and oscillating electric fields using molecular dynamics simulation. Specifically, we utilized a polymorphic fibrillar complex composed of two intertwined pentamer-strands of the Aß1-40 peptide with the Osaka mutation (E22Δ), known for its toxicity and stable structure. Our findings demonstrate that a 0.3 and 0.4 V/nm electric field combined with a 0.20 GHz frequency effectively disrupts the polymorphic conformation of Aß fibrils. Furthermore, we elucidate the molecular mechanisms underlying this disruption, providing insights into the potential therapeutic use of oscillating electric fields for AD. This research offers valuable insights into novel therapeutic approaches for combating AD pathology.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Eletricidade , Simulação de Dinâmica Molecular , Mutação , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/química , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Simulação por Computador , Amiloide/química , Amiloide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA