Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 44(4)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050100

RESUMO

What happens once a cortical territory becomes functionally redundant? We studied changes in brain function and behavior for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that amputees, but not one-handers, show increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demands. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased; however, this did not match any noticeable improvement in their behavioral task performance. More advanced multivariate fMRI analyses showed that amputees had stronger and more typical representation-relative to controls' contralateral hand representation-compared with one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life.


Assuntos
Amputados , Mapeamento Encefálico , Masculino , Humanos , Feminino , Mapeamento Encefálico/métodos , Mãos , Amputação Cirúrgica , Análise e Desempenho de Tarefas , Imageamento por Ressonância Magnética/métodos , Lateralidade Funcional
2.
Hum Brain Mapp ; 44(9): 3568-3585, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37145934

RESUMO

Scientists traditionally use passive stimulation to examine the organisation of primary somatosensory cortex (SI). However, given the close, bidirectional relationship between the somatosensory and motor systems, active paradigms involving free movement may uncover alternative SI representational motifs. Here, we used 7 Tesla functional magnetic resonance imaging to compare hallmark features of SI digit representation between active and passive tasks which were unmatched on task or stimulus properties. The spatial location of digit maps, somatotopic organisation, and inter-digit representational structure were largely consistent between tasks, indicating representational consistency. We also observed some task differences. The active task produced higher univariate activity and multivariate representational information content (inter-digit distances). The passive task showed a trend towards greater selectivity for digits versus their neighbours. Our findings highlight that, while the gross features of SI functional organisation are task invariant, it is important to also consider motor contributions to digit representation.


Assuntos
Mapeamento Encefálico , Córtex Somatossensorial , Humanos , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiologia , Mapeamento Encefálico/métodos , Dedos/fisiologia , Imageamento por Ressonância Magnética/métodos , Movimento/fisiologia
3.
PLoS Biol ; 18(6): e3000729, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511238

RESUMO

The potential ability of the human brain to represent an artificial limb as a body part (embodiment) has been inspiring engineers, clinicians, and scientists as a means to optimise human-machine interfaces. Using functional MRI (fMRI), we studied whether neural embodiment actually occurs in prosthesis users' occipitotemporal cortex (OTC). Compared with controls, different prostheses types were visually represented more similarly to each other, relative to hands and tools, indicating the emergence of a dissociated prosthesis categorisation. Greater daily life prosthesis usage correlated positively with greater prosthesis categorisation. Moreover, when comparing prosthesis users' representation of their own prosthesis to controls' representation of a similar looking prosthesis, prosthesis users represented their own prosthesis more dissimilarly to hands, challenging current views of visual prosthesis embodiment. Our results reveal a use-dependent neural correlate for wearable technology adoption, demonstrating adaptive use-related plasticity within the OTC. Because these neural correlates were independent of the prostheses' appearance and control, our findings offer new opportunities for prosthesis design by lifting restrictions imposed by the embodiment theory for artificial limbs.


Assuntos
Membros Artificiais , Encéfalo/fisiologia , Mãos/fisiologia , Adulto , Análise por Conglomerados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Córtex Visual/fisiologia , Adulto Jovem
4.
J Neurosci ; 41(13): 2980-2989, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33563728

RESUMO

The idea that when we use a tool we incorporate it into the neural representation of our body (embodiment) has been a major inspiration for philosophy, science, and engineering. While theoretically appealing, there is little direct evidence for tool embodiment at the neural level. Using functional magnetic resonance imaging (fMRI) in male and female human subjects, we investigated whether expert tool users (London litter pickers: n = 7) represent their expert tool more like a hand (neural embodiment) or less like a hand (neural differentiation), as compared with a group of tool novices (n = 12). During fMRI scans, participants viewed first-person videos depicting grasps performed by either a hand, litter picker, or a non-expert grasping tool. Using representational similarity analysis (RSA), differences in the representational structure of hands and tools were measured within occipitotemporal cortex (OTC). Contrary to the neural embodiment theory, we find that the experts group represent their own tool less like a hand (not more) relative to novices. Using a case-study approach, we further replicated this effect, independently, in five of the seven individual expert litter pickers, as compared with the novices. An exploratory analysis in left parietal cortex, a region implicated in visuomotor representations of hands and tools, also indicated that experts do not visually represent their tool more similar to hands, compared with novices. Together, our findings suggest that extensive tool use leads to an increased neural differentiation between visual representations of hands and tools. This evidence provides an important alternative framework to the prominent tool embodiment theory.SIGNIFICANCE STATEMENT It is commonly thought that tool use leads to the assimilation of the tool into the neural representation of the body, a process referred to as embodiment. Here, we demonstrate that expert tool users (London litter pickers) neurally represent their own tool less like a hand (not more), compared with novices. Our findings advance our current understanding for how experience shapes functional organization in high-order visual cortex. Further, this evidence provides an alternative framework to the prominent tool embodiment theory, suggesting instead that experience with tools leads to more distinct, separable hand and tool representations.


Assuntos
Encéfalo/fisiologia , Mãos/fisiologia , Imageamento por Ressonância Magnética/métodos , Destreza Motora/fisiologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Feminino , Força da Mão/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade
5.
Artigo em Inglês | MEDLINE | ID: mdl-35609964

RESUMO

Phantom limb pain (PLP) impacts the majority of individuals who undergo limb amputation. The PLP experience is highly heterogenous in its quality, intensity, frequency and severity. This heterogeneity, combined with the low prevalence of amputation in the general population, has made it difficult to accumulate reliable data on PLP. Consequently, we lack consensus on PLP mechanisms, as well as effective treatment options. However, the wealth of new PLP research, over the past decade, provides a unique opportunity to re-evaluate some of the core assumptions underlying what we know about PLP and the rationale behind PLP treatments. The goal of this review is to help generate consensus in the field on how best to research PLP, from phenomenology to treatment. We highlight conceptual and methodological challenges in studying PLP, which have hindered progress on the topic and spawned disagreement in the field, and offer potential solutions to overcome these challenges. Our hope is that a constructive evaluation of the foundational knowledge underlying PLP research practices will enable more informed decisions when testing the efficacy of existing interventions and will guide the development of the next generation of PLP treatments.

6.
J Neurosci ; 39(47): 9328-9342, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31611305

RESUMO

A fundamental organizing principle in the somatosensory and motor systems is somatotopy, where specific body parts are represented separately and adjacently to other body parts, resulting in a body map. Different terminals of the sensorimotor network show varied somatotopic layouts, in which the relative position, distance, and overlap between body-part representations differ. Since somatotopy is best characterized in the primary somatosensory (S1) and motor (M1) cortices, these terminals have been the main focus of research on somatotopic remapping following loss of sensory input (e.g., arm amputation). Cortical remapping is generally considered to be driven by the layout of the underlying somatotopy, such that neighboring body-part representations tend to activate the deprived brain region. Here, we challenge the assumption that somatotopic layout restricts remapping, by comparing patterns of remapping in humans born without one hand (hereafter, one-handers, n = 26) across multiple terminals of the sensorimotor pathway. We first report that, in the cerebellum of one-handers, the deprived hand region represents multiple body parts. Importantly, the native representations of some of these body parts do not neighbor the deprived hand region. We further replicate our previous findings, showing a similar pattern of remapping in the deprived hand region of the cerebral cortex in one-handers. Finally, we report preliminary results of a similar remapping pattern in the putamen of one-handers. Since these three sensorimotor terminals (cerebellum, cerebrum, putamen) contain different somatotopic layouts, the parallel remapping they undergo demonstrates that the mere spatial layout of body-part representations may not exclusively dictate remapping in the sensorimotor systems.SIGNIFICANCE STATEMENT When a hand is missing, the brain region that typically processes information from that hand may instead process information from other body parts, a phenomenon termed remapping. It is commonly thought that only body parts whose information is processed in regions neighboring the hand region could "take up" the resources of this now deprived region. Here we demonstrate that information from multiple body parts is processed in the hand regions of both the cerebral cortex and cerebellum. The native brain regions of these body parts have varying levels of overlap with the hand regions of the cerebral cortex and cerebellum, and do not necessarily neighbor the hand regions. We therefore propose that proximity between brain regions does not limit brain remapping.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebelar/diagnóstico por imagem , Deformidades Congênitas da Mão/diagnóstico por imagem , Mãos , Córtex Motor/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Adulto , Córtex Cerebelar/fisiologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Feminino , Mãos/fisiologia , Deformidades Congênitas da Mão/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Córtex Motor/fisiologia , Estimulação Luminosa/métodos , Desempenho Psicomotor/fisiologia , Córtex Somatossensorial/fisiologia
7.
Neuroimage ; 218: 116943, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32428706

RESUMO

Following arm amputation the region that represented the missing hand in primary somatosensory cortex (S1) becomes deprived of its primary input, resulting in changed boundaries of the S1 body map. This remapping process has been termed 'reorganisation' and has been attributed to multiple mechanisms, including increased expression of previously masked inputs. In a maladaptive plasticity model, such reorganisation has been associated with phantom limb pain (PLP). Brain activity associated with phantom hand movements is also correlated with PLP, suggesting that preserved limb functional representation may serve as a complementary process. Here we review some of the most recent evidence for the potential drivers and consequences of brain (re)organisation following amputation, based on human neuroimaging. We emphasise other perceptual and behavioural factors consequential to arm amputation, such as non-painful phantom sensations, perceived limb ownership, intact hand compensatory behaviour or prosthesis use, which have also been related to both cortical changes and PLP. We also discuss new findings based on interventions designed to alter the brain representation of the phantom limb, including augmented/virtual reality applications and brain computer interfaces. These studies point to a close interaction of sensory changes and alterations in brain regions involved in body representation, pain processing and motor control. Finally, we review recent evidence based on methodological advances such as high field neuroimaging and multivariate techniques that provide new opportunities to interrogate somatosensory representations in the missing hand cortical territory. Collectively, this research highlights the need to consider potential contributions of additional brain mechanisms, beyond S1 remapping, and the dynamic interplay of contextual factors with brain changes for understanding and alleviating PLP.


Assuntos
Amputação Cirúrgica , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Dor/diagnóstico por imagem , Dor/fisiopatologia , Membro Fantasma/diagnóstico por imagem , Membro Fantasma/fisiopatologia , Adulto , Amputados , Mapeamento Encefálico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dor/etiologia , Membro Fantasma/complicações , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiopatologia
8.
Ann Neurol ; 85(1): 59-73, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383312

RESUMO

OBJECTIVE: Phantom limb pain (PLP) is notoriously difficult to treat, partly due to an incomplete understanding of PLP-related disease mechanisms. Noninvasive brain stimulation (NIBS) is used to modulate plasticity in various neuropathological diseases, including chronic pain. Although NIBS can alleviate neuropathic pain (including PLP), both disease and treatment mechanisms remain tenuous. Insight into the mechanisms underlying both PLP and NIBS-induced PLP relief is needed for future implementation of such treatment and generalization to related conditions. METHODS: We used a within-participants, double-blind, and sham-controlled design to alleviate PLP via task-concurrent NIBS over the primary sensorimotor missing hand cortex (S1/M1). To specifically influence missing hand signal processing, amputees performed phantom hand movements during anodal transcranial direct current stimulation. Brain activity was monitored using neuroimaging during and after NIBS. PLP ratings were obtained throughout the week after stimulation. RESULTS: A single session of intervention NIBS significantly relieved PLP, with effects lasting at least 1 week. PLP relief associated with reduced activity in the S1/M1 missing hand cortex after stimulation. Critically, PLP relief and reduced S1/M1 activity correlated with preceding activity changes during stimulation in the mid- and posterior insula and secondary somatosensory cortex (S2). INTERPRETATION: The observed correlation between PLP relief and decreased S1/M1 activity confirms our previous findings linking PLP with increased S1/M1 activity. Our results further highlight the driving role of the mid- and posterior insula, as well as S2, in modulating PLP. Lastly, our novel PLP intervention using task-concurrent NIBS opens new avenues for developing treatment for PLP and related pain conditions. ANN NEUROL 2019;85:59-73.


Assuntos
Amputados , Manejo da Dor/métodos , Membro Fantasma/fisiopatologia , Membro Fantasma/terapia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Idoso , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição da Dor/métodos , Membro Fantasma/diagnóstico por imagem , Córtex Somatossensorial/diagnóstico por imagem , Córtex Somatossensorial/fisiopatologia , Adulto Jovem
9.
Brain ; 141(5): 1422-1433, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29534154

RESUMO

The human brain contains multiple hand-selective areas, in both the sensorimotor and visual systems. Could our brain repurpose neural resources, originally developed for supporting hand function, to represent and control artificial limbs? We studied individuals with congenital or acquired hand-loss (hereafter one-handers) using functional MRI. We show that the more one-handers use an artificial limb (prosthesis) in their everyday life, the stronger visual hand-selective areas in the lateral occipitotemporal cortex respond to prosthesis images. This was found even when one-handers were presented with images of active prostheses that share the functionality of the hand but not necessarily its visual features (e.g. a 'hook' prosthesis). Further, we show that daily prosthesis usage determines large-scale inter-network communication across hand-selective areas. This was demonstrated by increased resting state functional connectivity between visual and sensorimotor hand-selective areas, proportional to the intensiveness of everyday prosthesis usage. Further analysis revealed a 3-fold coupling between prosthesis activity, visuomotor connectivity and usage, suggesting a possible role for the motor system in shaping use-dependent representation in visual hand-selective areas, and/or vice versa. Moreover, able-bodied control participants who routinely observe prosthesis usage (albeit less intensively than the prosthesis users) showed significantly weaker associations between degree of prosthesis observation and visual cortex activity or connectivity. Together, our findings suggest that altered daily motor behaviour facilitates prosthesis-related visual processing and shapes communication across hand-selective areas. This neurophysiological substrate for prosthesis embodiment may inspire rehabilitation approaches to improve usage of existing substitutionary devices and aid implementation of future assistive and augmentative technologies.


Assuntos
Amputados/reabilitação , Membros Artificiais , Córtex Cerebral/diagnóstico por imagem , Retroalimentação Sensorial/fisiologia , Mãos , Adulto , Amputados/psicologia , Mapeamento Encefálico , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Estimulação Luminosa , Desempenho Psicomotor/fisiologia
10.
J Neurosci ; 36(4): 1113-27, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26818501

RESUMO

Studies of human primary somatosensory cortex (S1) have placed a strong emphasis on the cortical representation of the hand and the propensity for plasticity therein. Despite many reports of group differences and experience-dependent changes in cortical digit somatotopy, relatively little work has considered the variability of these maps across individuals and to what extent this detailed functional architecture is dynamic over time. With the advent of 7 T fMRI, it is increasingly feasible to map such detailed organization noninvasively in individual human participants. Here, we extend the ability of ultra-high-field imaging beyond a technological proof of principle to investigate the intersubject variability of digit somatotopy across participants and the stability of this organization across a range of intervals. Using a well validated phase-encoding paradigm and an active task, we demonstrate the presence of highly reproducible maps of individual digits in S1, sharply contrasted by a striking degree of intersubject variability in the shape, extent, and relative position of individual digit representations. Our results demonstrate the presence of very stable fine-grain somatotopy of the digits in human S1 and raise the issue of population variability in such detailed functional architecture of the human brain. These findings have implications for the study of detailed sensorimotor plasticity in the context of both learning and pathological dysfunction. The simple task and 10 min scan required to derive these maps also raises the potential for this paradigm as a tool in the clinical setting. SIGNIFICANCE STATEMENT: We applied ultra-high-resolution fMRI at 7 T to map sensory digit representations in the human primary somatosensory cortex (S1) at the level of individual participants across multiple time points. The resulting fine-grain maps of individual digits in S1 reveal the stability in this fine-grain functional organization over time, contrasted with the variability in these maps across individuals.


Assuntos
Mapeamento Encefálico , Dedos/inervação , Dedos/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Estimulação Física , Córtex Somatossensorial/irrigação sanguínea , Fatores de Tempo , Adulto Jovem
11.
Brain ; 144(7): 1929-1932, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33787898
12.
J Neurophysiol ; 115(3): 1088-97, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26631145

RESUMO

Tactile learning transfers from trained to untrained fingers in a pattern that reflects overlap between the representations of fingers in the somatosensory system (e.g., neurons with multifinger receptive fields). While physical proximity on the body is known to determine the topography of somatosensory representations, tactile coactivation is also an established organizing principle of somatosensory topography. In this study we investigated whether tactile coactivation, induced by habitual inter-finger cooperative use (use pattern), shapes inter-finger overlap. To this end, we used psychophysics to compare the transfer of tactile learning from the middle finger to its adjacent fingers. This allowed us to compare transfer to two fingers that are both physically and cortically adjacent to the middle finger but have differing use patterns. Specifically, the middle finger is used more frequently with the ring than with the index finger. We predicted this should lead to greater representational overlap between the former than the latter pair. Furthermore, this difference in overlap should be reflected in differential learning transfer from the middle to index vs. ring fingers. Subsequently, we predicted temporary learning-related changes in the middle finger's representation (e.g., cortical magnification) would cause transient interference in perceptual thresholds of the ring, but not the index, finger. Supporting this, longitudinal analysis revealed a divergence where learning transfer was fast to the index finger but relatively delayed to the ring finger. Our results support the theory that tactile coactivation patterns between digits affect their topographic relationships. Our findings emphasize how action shapes perception and somatosensory organization.


Assuntos
Dedos/fisiologia , Aprendizagem , Percepção do Tato , Adulto , Feminino , Dedos/inervação , Humanos , Masculino , Córtex Somatossensorial/fisiologia
13.
Brain ; 138(Pt 8): 2140-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26072517

RESUMO

The role of cortical activity in generating and abolishing chronic pain is increasingly emphasized in the clinical community. Perhaps the most striking example of this is the maladaptive plasticity theory, according to which phantom pain arises from remapping of cortically neighbouring representations (lower face) into the territory of the missing hand following amputation. This theory has been extended to a wide range of chronic pain conditions, such as complex regional pain syndrome. Yet, despite its growing popularity, the evidence to support the maladaptive plasticity theory is largely based on correlations between pain ratings and oftentimes crude measurements of cortical reorganization, with little consideration of potential contributions of other clinical factors, such as adaptive behaviour, in driving the identified brain plasticity. Here, we used a physiologically meaningful measurement of cortical reorganization to reassess its relationship to phantom pain in upper limb amputees. We identified small yet consistent shifts in lip representation contralateral to the missing hand towards, but not invading, the hand area. However, we were unable to identify any statistical relationship between cortical reorganization and phantom sensations or pain either with this measurement or with the traditional Euclidian distance measurement. Instead, we demonstrate that other factors may contribute to the observed remapping. Further research that reassesses more broadly the relationship between cortical reorganization and chronic pain is warranted.


Assuntos
Amputação Cirúrgica , Braço/cirurgia , Mapeamento Encefálico , Movimento/fisiologia , Córtex Sensório-Motor/fisiopatologia , Adulto , Amputação Cirúrgica/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal/fisiologia , Membro Fantasma/fisiopatologia , Córtex Sensório-Motor/patologia , Adulto Jovem
14.
J Neurosci ; 34(14): 4882-95, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24695707

RESUMO

Regions in the occipitotemporal cortex (OTC) show clear selectivity to static images of human body parts, and upper limbs in particular, with respect to other object categories. Such selectivity was previously attributed to shape aspects, which presumably vary across categories. Alternatively, it has been proposed that functional selectivity for upper limbs is driven by processing of their distinctive motion features. In the present study we show that selectivity to static upper-limb images and motion processing go hand in hand. Using resting-state and task-based functional MRI, we demonstrate that OTC voxels showing greater preference to static images of arms and hands also show stronger functional connectivity with motion coding regions within the human middle temporal complex (hMT+), but not with shape-selective midtier areas, such as hV4 or LO-1, suggesting a tight link between upper-limb selectivity and motion processing. To test this directly, we created a set of natural arm-movement videos where kinematic patterns were parametrically manipulated, while keeping shape information constant. Using multivariate pattern analysis, we show that the degree of (dis)similarity in arm-velocity profiles across the video set predicts, to a significant extent, the degree of (dis)similarity in multivoxel activation patterns in both upper-limb-selective OTC regions and the hMT+. Together, these results suggest that the functional specificity of upper-limb-selective regions may be partially determined by their involvement in the processing of upper-limb dynamics. We propose that the selectivity to static upper-limb images in the OTC may be a result of experience-dependent association between shape elements, which characterize upper limbs, and upper-limb-specific motion patterns.


Assuntos
Mapeamento Encefálico , Mãos , Movimento , Lobo Occipital/fisiologia , Lobo Temporal/fisiologia , Extremidade Superior/inervação , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Lobo Occipital/irrigação sanguínea , Oxigênio/sangue , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Lobo Temporal/irrigação sanguínea , Adulto Jovem
15.
Neuroimage ; 114: 217-25, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25776216

RESUMO

One of the most striking demonstrations of plasticity in the adult human brain follows peripheral injury, such as amputation. In the primary sensorimotor cortex, arm amputation results in massive local remapping of the missing hands' cortical territory. However, little is known about the consequences of sensorimotor deprivation on global brain organisation. Here, we used resting-state fMRI to identify large-scale reorganisation beyond the primary sensorimotor cortex in arm amputees, compared with two-handed controls. Specifically, we characterised changes in functional connectivity between the cortical territory of the missing hand in the primary sensorimotor cortex ('missing hand cortex') and two networks of interest: the sensorimotor network, which is typically strongly associated with the hand cortex, and the default mode network (DMN), which is normally dissociated from it. Functional connectivity values between the missing hand cortex and the sensorimotor network were reduced in amputees, and connectivity was weaker in individuals amputated for longer periods. Lower levels of functional coupling between the missing hand cortex and the sensorimotor network were also associated with emerged coupling of this cortex with the DMN. Our results demonstrate that plasticity following arm amputation is not restricted to local remapping occurring within the sensorimotor homunculus of the missing hand but rather produces a cascade of cortical reorganisation at a network-level scale. These findings may provide a new framework for understanding how local deprivation following amputation could elicit complex perceptual experiences of phantom sensations, such as phantom pain.


Assuntos
Braço/cirurgia , Rede Nervosa/fisiopatologia , Plasticidade Neuronal , Córtex Sensório-Motor/fisiopatologia , Adulto , Amputação Cirúrgica , Encéfalo/fisiopatologia , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Adulto Jovem
16.
PLoS One ; 19(1): e0297480, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38232113

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0294805.].

17.
Sci Robot ; 9(90): eadk5183, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809995

RESUMO

The advancement of motor augmentation and the broader domain of human-machine interaction rely on a seamless integration with users' physical and cognitive capabilities. These considerations may markedly fluctuate among individuals on the basis of their age, form, and abilities. There is a need to develop a standard for considering these diversity needs and preferences to guide technological development, and large-scale testing can provide us with evidence for such considerations. Public engagement events provide an important opportunity to build a bidirectional discourse with potential users for the codevelopment of inclusive and accessible technologies. We exhibited the Third Thumb, a hand augmentation device, at a public engagement event and tested participants from the general public, who are often not involved in such early technological development of wearable robotic technology. We focused on wearability (fit and control), ability to successfully operate the device, and ability levels across diversity factors relevant for physical technologies (gender, handedness, and age). Our inclusive design was successful in 99.3% of our diverse sample of 596 individuals tested (age range from 3 to 96 years). Ninety-eight percent of participants were further able to successfully manipulate objects using the extra thumb during the first minute of use, with no significant influences of gender, handedness, or affinity for hobbies involving the hands. Performance was generally poorer among younger children (aged ≤11 years). Although older and younger adults performed the task comparably, we identified age costs with the older adults. Our findings offer tangible demonstration of the initial usability of the Third Thumb for a broad demographic.


Assuntos
Mãos , Robótica , Humanos , Feminino , Masculino , Adulto , Idoso , Adolescente , Pessoa de Meia-Idade , Adulto Jovem , Criança , Mãos/fisiologia , Idoso de 80 Anos ou mais , Pré-Escolar , Robótica/instrumentação , Desenho de Equipamento , Sistemas Homem-Máquina , Dispositivos Eletrônicos Vestíveis , Polegar
18.
Nat Hum Behav ; 8(6): 1108-1123, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38499772

RESUMO

A long-standing engineering ambition has been to design anthropomorphic bionic limbs: devices that look like and are controlled in the same way as the biological body (biomimetic). The untested assumption is that biomimetic motor control enhances device embodiment, learning, generalization and automaticity. To test this, we compared biomimetic and non-biomimetic control strategies for non-disabled participants when learning to control a wearable myoelectric bionic hand operated by an eight-channel electromyography pattern-recognition system. We compared motor learning across days and behavioural tasks for two training groups: biomimetic (mimicking the desired bionic hand gesture with biological hand) and arbitrary control (mapping an unrelated biological hand gesture with the desired bionic gesture). For both trained groups, training improved bionic limb control, reduced cognitive reliance and increased embodiment over the bionic hand. Biomimetic users had more intuitive and faster control early in training. Arbitrary users matched biomimetic performance later in training. Furthermore, arbitrary users showed increased generalization to a new control strategy. Collectively, our findings suggest that biomimetic and arbitrary control strategies provide different benefits. The optimal strategy is probably not strictly biomimetic, but rather a flexible strategy within the biomimetic-to-arbitrary spectrum, depending on the user, available training opportunities and user requirements.


Assuntos
Biomimética , Biônica , Eletromiografia , Mãos , Aprendizagem , Destreza Motora , Humanos , Mãos/fisiologia , Biomimética/métodos , Adulto , Aprendizagem/fisiologia , Masculino , Feminino , Destreza Motora/fisiologia , Adulto Jovem
19.
Psychol Sci ; 24(5): 762-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23538915

RESUMO

The bodily self is constructed from multisensory information. However, little is known of the relation between multisensory development and the emerging sense of self. We investigated this question by measuring the strength of the rubber-hand illusion in young children (4 to 9 years old) and adults. Intermanual pointing showed that children were as sensitive as adults to visual-tactile synchrony cues for hand position, which indicates that a visual-tactile pathway to the bodily self matures by at least 4 years of age. However, regardless of synchrony cues, children's perceived hand position was closer to the rubber hand than adults' perceived hand position was. This indicates a second, later-maturing process based on visual-proprioceptive information. Furthermore, explicit feelings of embodiment were related only to the visual-tactile process. These findings demonstrate two dissociable processes underlying body representation in early life, and they call into question current models of body representation and ownership in adulthood.


Assuntos
Imagem Corporal/psicologia , Ilusões/psicologia , Percepção do Tato/fisiologia , Percepção Visual/fisiologia , Adulto , Fatores Etários , Criança , Pré-Escolar , Sinais (Psicologia) , Feminino , Mãos , Humanos , Masculino , Estimulação Luminosa/métodos , Estimulação Física/métodos , Adulto Jovem
20.
Elife ; 122023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37986628

RESUMO

Neurological insults, such as congenital blindness, deafness, amputation, and stroke, often result in surprising and impressive behavioural changes. Cortical reorganisation, which refers to preserved brain tissue taking on a new functional role, is often invoked to account for these behavioural changes. Here, we revisit many of the classical animal and patient cortical remapping studies that spawned this notion of reorganisation. We highlight empirical, methodological, and conceptual problems that call this notion into doubt. We argue that appeal to the idea of reorganisation is attributable in part to the way that cortical maps are empirically derived. Specifically, cortical maps are often defined based on oversimplified assumptions of 'winner-takes-all', which in turn leads to an erroneous interpretation of what it means when these maps appear to change. Conceptually, remapping is interpreted as a circuit receiving novel input and processing it in a way unrelated to its original function. This implies that neurons are either pluripotent enough to change what they are tuned to or that a circuit can change what it computes. Instead of reorganisation, we argue that remapping is more likely to occur due to potentiation of pre-existing architecture that already has the requisite representational and computational capacity pre-injury. This architecture can be facilitated via Hebbian and homeostatic plasticity mechanisms. Crucially, our revised framework proposes that opportunities for functional change are constrained throughout the lifespan by the underlying structural 'blueprint'. At no period, including early in development, does the cortex offer structural opportunities for functional pluripotency. We conclude that reorganisation as a distinct form of cortical plasticity, ubiquitously evoked with words such as 'take-over'' and 'rewiring', does not exist.


Assuntos
Encéfalo , Acidente Vascular Cerebral , Animais , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico , Amputação Cirúrgica , Plasticidade Neuronal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA