Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375537

RESUMO

Hypoglycemia triggers autonomic and endocrine counter-regulatory responses to restore glucose homeostasis, a response that is impaired in patients with diabetes and its long-term complication hypoglycemia-associated autonomic failure (HAAF). We show that insulin-evoked hypoglycemia is severely aggravated in mice lacking the cation channel proteins TRPC1, TRPC4, TRPC5, and TRPC6, which cannot be explained by alterations in glucagon or glucocorticoid action. By using various TRPC compound knockout mouse lines, we pinpointed the failure in sympathetic counter-regulation to the lack of the TRPC5 channel subtype in adrenal chromaffin cells, which prevents proper adrenaline rise in blood plasma. Using electrophysiological analyses, we delineate a previously unknown signaling pathway in which stimulation of PAC1 or muscarinic receptors activates TRPC5 channels in a phospholipase-C-dependent manner to induce sustained adrenaline secretion as a crucial step in the sympathetic counter response to insulin-induced hypoglycemia. By comparing metabolites in the plasma, we identified reduced taurine levels after hypoglycemia induction as a commonality in TRPC5-deficient mice and HAAF patients.

2.
Elife ; 92020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32391794

RESUMO

Vesicle fusion is mediated by assembly of SNARE proteins between opposing membranes. While previous work suggested an active role of SNARE transmembrane domains (TMDs) in promoting membrane merger (Dhara et al., 2016), the underlying mechanism remained elusive. Here, we show that naturally-occurring v-SNARE TMD variants differentially regulate fusion pore dynamics in mouse chromaffin cells, indicating TMD flexibility as a mechanistic determinant that facilitates transmitter release from differentially-sized vesicles. Membrane curvature-promoting phospholipids like lysophosphatidylcholine or oleic acid profoundly alter pore expansion and fully rescue the decelerated fusion kinetics of TMD-rigidifying VAMP2 mutants. Thus, v-SNARE TMDs and phospholipids cooperate in supporting membrane curvature at the fusion pore neck. Oppositely, slowing of pore kinetics by the SNARE-regulator complexin-2 withstands the curvature-driven speeding of fusion, indicating that pore evolution is tightly coupled to progressive SNARE complex formation. Collectively, TMD-mediated support of membrane curvature and SNARE force-generated membrane bending promote fusion pore formation and expansion.


Assuntos
Exocitose , Fusão de Membrana , Complexos Multiproteicos/fisiologia , Neurotransmissores/fisiologia , Fosfolipídeos/metabolismo , Proteínas SNARE/fisiologia , Proteína 2 Associada à Membrana da Vesícula/fisiologia , Animais , Cálcio/fisiologia , Membrana Celular/metabolismo , Células Cultivadas , Células Cromafins , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mutantes/fisiologia , Ligação Proteica , Domínios Proteicos , Vesículas Secretórias/fisiologia
3.
Elife ; 72018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30044227

RESUMO

ComplexinII (CpxII) inhibits non-synchronized vesicle fusion, but the underlying mechanisms have remained unclear. Here, we provide evidence that the far C-terminal domain (CTD) of CpxII interferes with SNARE assembly, thereby arresting tonic exocytosis. Acute infusion of a CTD-derived peptide into mouse chromaffin cells enhances synchronous release by diminishing premature vesicle fusion like full-length CpxII, indicating a direct, inhibitory function of the CTD that sets the magnitude of the primed vesicle pool. We describe a high degree of structural similarity between the CpxII CTD and the SNAP25-SN1 domain (C-terminal half) and show that the CTD peptide lowers the rate of SDS-resistant SNARE complex formation in vitro. Moreover, corresponding CpxII:SNAP25 chimeras do restore complexin's function and even 'superclamp' tonic secretion. Collectively, these results support a so far unrecognized clamping mechanism wherein the CpxII C-terminus hinders spontaneous SNARE complex assembly, enabling the build-up of a release-ready pool of vesicles for synchronized Ca2+-triggered exocytosis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Exocitose/genética , Proteínas do Tecido Nervoso/química , Vesículas Sinápticas/química , Proteína 25 Associada a Sinaptossoma/química , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Cálcio/química , Membrana Celular/química , Membrana Celular/genética , Fusão de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Ligação Proteica , Domínios Proteicos/genética , Proteínas SNARE/química , Proteínas SNARE/genética , Vesículas Sinápticas/genética , Proteína 25 Associada a Sinaptossoma/genética
4.
Elife ; 52016 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-27343350

RESUMO

Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion.


Assuntos
Exocitose , Fusão de Membrana , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Vesículas Secretórias/metabolismo , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Animais , Células Cultivadas , Análise Mutacional de DNA , Camundongos , Modelos Biológicos , Proteínas Mutantes/química , Conformação Proteica , Proteína 2 Associada à Membrana da Vesícula/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA