Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Immunol ; 23(8): 1169-1182, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35882934

RESUMO

Emergent physical properties of tissues are not readily understood by reductionist studies of their constituent cells. Here, we show molecular signals controlling cellular, physical, and structural properties and collectively determine tissue mechanics of lymph nodes, an immunologically relevant adult tissue. Lymph nodes paradoxically maintain robust tissue architecture in homeostasis yet are continually poised for extensive expansion upon immune challenge. We find that in murine models of immune challenge, cytoskeletal mechanics of a cellular meshwork of fibroblasts determine tissue tension independently of extracellular matrix scaffolds. We determine that C-type lectin-like receptor 2 (CLEC-2)-podoplanin signaling regulates the cell surface mechanics of fibroblasts, providing a mechanically sensitive pathway to regulate lymph node remodeling. Perturbation of fibroblast mechanics through genetic deletion of podoplanin attenuates T cell activation. We find that increased tissue tension through the fibroblastic stromal meshwork is required to trigger the initiation of fibroblast proliferation and restore homeostatic cellular ratios and tissue structure through lymph node expansion.


Assuntos
Fibroblastos , Linfonodos , Animais , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Homeostase , Lectinas Tipo C/metabolismo , Camundongos
2.
Immunity ; 50(6): 1344-1346, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216457

RESUMO

In this issue of Immunity, Mondor et al. (2019) and Camara et al. (2019) show that lymphatic endothelial cells are essential components of the niche that forms and maintains the subcapsular sinusoidal macrophage network in homeostasis and throughout an immune challenge.


Assuntos
Células Endoteliais , Macrófagos , Homeostase
3.
J Cell Sci ; 134(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34184727

RESUMO

In adaptive immunity, CLEC-2+ dendritic cells (DCs) contact fibroblastic reticular cells (FRCs) inhibiting podoplanin-dependent actomyosin contractility, permitting FRC spreading and lymph node expansion. The molecular mechanisms controlling lymph node remodelling are incompletely understood. We asked how podoplanin is regulated on FRCs in the early phase of lymph node expansion, and which other proteins are required for the FRC response to DCs. We find that podoplanin and its partner proteins CD44 and CD9 are differentially expressed by specific lymph node stromal populations in vivo, and their expression in FRCs is coregulated by CLEC-2 (encoded by CLEC1B). Both CD44 and CD9 suppress podoplanin-dependent contractility. We find that beyond contractility, podoplanin is required for FRC polarity and alignment. Independently of podoplanin, CD44 and CD9 affect FRC-FRC interactions. Furthermore, our data show that remodelling of the FRC cytoskeleton in response to DCs is a two-step process requiring podoplanin partner proteins CD44 and CD9. Firstly, CLEC-2 and podoplanin binding inhibits FRC contractility, and, secondly, FRCs form protrusions and spread, which requires both CD44 and CD9. Together, we show a multi-faceted FRC response to DCs, which requires CD44 and CD9 in addition to podoplanin.


Assuntos
Células Dendríticas , Fibroblastos , Linfonodos , Actomiosina , Animais , Citoesqueleto , Receptores de Hialuronatos , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Tetraspanina 29
4.
PLoS Pathog ; 14(1): e1006821, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29300777

RESUMO

The highly pathogenic avian influenza (HPAI) H5N1 influenza virus has been a public health concern for more than a decade because of its frequent zoonoses and the high case fatality rate associated with human infections. Severe disease following H5N1 influenza infection is often associated with dysregulated host innate immune response also known as cytokine storm but the virological and cellular basis of these responses has not been clearly described. We rescued a series of 6:2 reassortant viruses that combined a PR8 HA/NA pairing with the internal gene segments from human adapted H1N1, H3N2, or avian H5N1 viruses and found that mice infected with the virus with H5N1 internal genes suffered severe weight loss associated with increased lung cytokines but not high viral load. This phenotype did not map to the NS gene segment, and NS1 protein of H5N1 virus functioned as a type I IFN antagonist as efficient as NS1 of H1N1 or H3N2 viruses. Instead we discovered that the internal genes of H5N1 virus supported a much higher level of replication of viral RNAs in myeloid cells in vitro, but not in epithelial cells and that this was associated with high induction of type I IFN in myeloid cells. We also found that in vivo during H5N1 recombinant virus infection cells of haematopoetic origin were infected and produced type I IFN and proinflammatory cytokines. Taken together our data infer that human and avian influenza viruses are differently controlled by host factors in alternative cell types; internal gene segments of avian H5N1 virus uniquely drove high viral replication in myeloid cells, which triggered an excessive cytokine production, resulting in severe immunopathology.


Assuntos
Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Células Mieloides/virologia , Infecções por Orthomyxoviridae/genética , Replicação Viral/genética , Células A549 , Animais , Células Cultivadas , Cães , Feminino , Genes Virais/fisiologia , Células HEK293 , Humanos , Imunidade Inata/fisiologia , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Humana/genética , Influenza Humana/imunologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Índice de Gravidade de Doença
5.
Am J Respir Crit Care Med ; 191(9): 1040-9, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25730467

RESUMO

RATIONALE: Despite relative antigenic stability, respiratory syncytial virus (RSV) reinfects throughout life. After more than 40 years of research, no effective human vaccine exists and correlates of protection remain poorly defined. Most current vaccine candidates seek to induce high levels of RSV-specific serum neutralizing antibodies, which are associated with reduced RSV-related hospitalization rates in observational studies but may not actually prevent infection. OBJECTIVES: To characterize correlates of protection from infection and the generation of RSV-specific humoral memory to promote effective vaccine development. METHODS: We inoculated 61 healthy adults with live RSV and studied protection from infection by serum and mucosal antibody. We analyzed RSV-specific peripheral blood plasmablast and memory B-cell frequencies and antibody longevity. MEASUREMENTS AND MAIN RESULTS: Despite moderately high levels of preexisting serum antibody, 34 (56%) became infected, of whom 23 (68%) developed symptomatic colds. Prior RSV-specific nasal IgA correlated significantly more strongly with protection from polymerase chain reaction-confirmed infection than serum neutralizing antibody. Increases in virus-specific antibody titers were variable and transient in infected subjects but correlated with plasmablasts that peaked around Day 10. During convalescence, only IgG (and no IgA) RSV-specific memory B cells were detectable in peripheral blood. This contrasted with natural influenza infection, in which virus-specific IgA memory B cells were readily recovered. CONCLUSIONS: This observed specific defect in IgA memory may partly explain the ability of RSV to cause recurrent symptomatic infections. If so, vaccines able to induce durable RSV-specific IgA responses may be more protective than those generating systemic antibody alone.


Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Imunoglobulina A/imunologia , Memória Imunológica , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Eur J Immunol ; 44(8): 2340-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24777856

RESUMO

During respiratory syncytial virus (RSV) infection CD8(+) T cells both assist in viral clearance and contribute to immunopathology. CD8(+) T cells recognize viral peptides presented by dendritic cells (DCs), which can directly present viral antigens when infected or, alternatively, "cross-present" antigens after endocytosis of dead or dying infected cells. Mouse CD8α(+) and CD103(+) DCs excel at cross-presentation, in part because they express the receptor DNGR-1 that detects dead cells by binding to exposed F-actin and routes internalized cell debris into the cross-presentation pathway. As RSV causes death in infected epithelial cells, we tested whether cross-presentation via DNGR-1 is necessary for CD8(+) T-cell responses to the virus. DNGR-1-deficient or wild-type mice were intranasally inoculated with RSV and the magnitude of RSV-specific CD8(+) T-cell induction was measured. We found that during live RSV infection, cross-presentation via DNGR-1 did not have a major role in the generation of RSV-specific CD8(+) T-cell responses. However, after intranasal immunization with dead cells infected with RSV, a dependence on DNGR-1 for RSV-specific CD8(+) T-cell responses was observed, confirming the ascribed role of the receptor. Thus, direct presentation by DCs may be the major pathway initiating CD8(+) T-cell responses to RSV, while DNGR-1-dependent cross-presentation has no detectable role.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Lectinas Tipo C/imunologia , Receptores Imunológicos/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Actinas/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos Virais/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Vírus Sinciciais Respiratórios/imunologia , Carga Viral/imunologia
8.
J Virol ; 87(20): 10946-54, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926350

RESUMO

During viral infection, inflammation and recovery are tightly controlled by competing proinflammatory and regulatory immune pathways. Respiratory syncytial virus (RSV) is the leading global cause of infantile bronchiolitis, which is associated with recurrent wheeze and asthma diagnosis in later life. Th2-driven disease has been well described under some conditions for RSV-infected mice. In the present studies, we used the Foxp3(DTR) mice (which allow specific conditional depletion of Foxp3(+) T cells) to investigate the functional effects of regulatory T cells (Tregs) during A2-strain RSV infection. Infected Treg-depleted mice lost significantly more weight than wild-type mice, indicating enhanced disease. This enhancement was characterized by increased cellularity in the bronchoalveolar lavage (BAL) fluid and notable lung eosinophilia not seen in control mice. This was accompanied by abundant CD4(+) and CD8(+) T cells exhibiting an activated phenotype and induction of interleukin 13 (IL-13)- and GATA3-expressing Th2-type CD4(+) T cells that remained present in the airways even 14 days after infection. Therefore, Treg cells perform vital anti-inflammatory functions during RSV infection, suppressing pathogenic T cell responses and inhibiting lung eosinophilia. These findings provide additional evidence that dysregulation of normal immune responses to viral infection may contribute to severe RSV disease.


Assuntos
Eosinofilia Pulmonar/patologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/biossíntese , Técnicas de Silenciamento de Genes , Interleucina-13/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Dis Model Mech ; 15(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35072206

RESUMO

Lymphoid tissue returns to a steady state once each immune response is resolved, and although this occurs multiple times throughout life, its structural integrity and functionality remain unaffected. Stromal cells orchestrate cellular interactions within lymphoid tissue, and any changes to the microenvironment can have detrimental outcomes and drive disease. A breakdown in lymphoid tissue homeostasis can lead to a loss of tissue structure and function that can cause aberrant immune responses. This Review highlights recent advances in our understanding of lymphoid tissue function and remodelling in adaptive immunity and in disease states. We discuss the functional role of lymphoid tissue in disease progression and explore the changes to lymphoid tissue structure and function driven by infection, chronic inflammatory conditions and cancer. Understanding the role of lymphoid tissues in immune responses to a wide range of pathologies allows us to take a fuller systemic view of disease progression.


Assuntos
Imunidade Adaptativa , Tecido Linfoide , Comunicação Celular , Homeostase , Células Estromais
10.
Mucosal Immunol ; 14(1): 267-276, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32576926

RESUMO

Innate immune responses are important to protect the neonatal lung, which becomes exposed to commensal and pathogenic microorganisms immediately after birth, at a time when both the lung and the adaptive immune system are still developing. How immune cells in the neonatal lung respond to innate immune stimuli, including toll-like receptor (TLR) agonists, or viruses, is currently unclear. To address this, adult and neonatal mice were intranasally administered with various innate immune stimuli, respiratory syncytial virus (RSV) or influenza virus and cytokine and chemokine levels were quantified. The neonatal lungs responded weakly to RSV and most stimuli but more strongly than adult mice to R848 and influenza virus, both of which activate TLR7 and the inflammasome. Notably, neonatal lungs also contained higher levels of cAMP, a secondary messenger produced following adenosine receptor signaling, than adult lungs and increased responsiveness to R848 was observed in adult mice when adenosine was coadministered. Our data suggest that the neonatal lung may respond preferentially to stimuli that coactivate TLR7 and the inflammasome and that these responses may be amplified by extracellular adenosine. Improved understanding of regulation of immune responses in the neonatal lung can inform the development of vaccine adjuvants for the young.


Assuntos
Imidazóis/farmacologia , Imunidade Inata/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae/imunologia , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , AMP Cíclico/metabolismo , Citocinas/biossíntese , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Pulmão/virologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Camundongos , Fator 88 de Diferenciação Mieloide/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
iScience ; 24(9): 102976, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34485858

RESUMO

Melanoma is an aggressive skin cancer developing from melanocytes, frequently resulting in metastatic disease. Melanoma cells utilize amoeboid migration as mode of local invasion. Amoeboid invasion is characterized by rounded cell morphology and high actomyosin contractility driven by Rho GTPase signalling. Migrastatic drugs targeting actin polymerization and contractility are therefore a promising treatment option for metastatic melanoma. To predict amoeboid invasion and metastatic potential, biomarkers functionally linked to contractility pathways are needed. The glycoprotein podoplanin drives actomyosin contractility in lymphoid fibroblasts and is overexpressed in many cancers. We show that podoplanin enhances amoeboid invasion in melanoma. Podoplanin expression in murine melanoma drives rounded cell morphology, increasing motility, and invasion in vivo. Podoplanin expression is increased in a subset of dedifferentiated human melanoma, and in vitro is sufficient to upregulate melanoma-associated marker Pou3f2/Brn2. Together, our data define podoplanin as a functional biomarker for dedifferentiated invasive melanoma and a promising migrastatic therapeutic target.

12.
Mucosal Immunol ; 12(5): 1244-1255, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31358860

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infections, especially in infants. Lung neutrophilia is a hallmark of RSV disease but the mechanism by which neutrophils are recruited and activated is unclear. Here, we investigate the innate immune signaling pathways underlying neutrophil recruitment and activation in RSV-infected mice. We show that MyD88/TRIF signaling is essential for lung neutrophil recruitment while MAVS signaling, leading to type I IFN production, is necessary for neutrophil activation. Consistent with that notion, administration of type I IFNs to the lungs of RSV-infected Mavs-/- mice partially activates lung neutrophils recruited via the MyD88/TRIF pathway. Conversely, lack of neutrophil recruitment to the lungs of RSV-infected Myd88/Trif-/- mice can be corrected by administration of chemoattractants and those neutrophils become fully activated. Interestingly, Myd88/Trif-/- mice did not have increased lung viral loads during RSV infection, suggesting that neutrophils are dispensable for viral control. Thus, two distinct pathogen sensing pathways collaborate for neutrophil recruitment and full activation during RSV infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Animais , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Imunofenotipagem , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Knockout , Neutrófilos/patologia , Vírus Sinciciais Respiratórios/imunologia , Transdução de Sinais
13.
Cell Rep ; 29(9): 2810-2822.e5, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31775047

RESUMO

Lymph nodes (LNs) act as filters, constantly sampling peripheral cues. This is facilitated by the conduit network, a tubular structure of aligned extracellular matrix (ECM) fibrils ensheathed by fibroblastic reticular cells (FRCs). LNs undergo rapid 3- to 5-fold expansion during adaptive immune responses, but these ECM-rich structures are not permanently damaged. Whether conduit flow or filtering function is affected during LN expansion is unknown. Here, we show that conduits are partially disrupted during acute LN expansion, but FRC-FRC contacts remain connected. We reveal that polarized FRCs deposit ECM basolaterally using LL5-ß and that ECM production is regulated at transcriptional and secretory levels by the C-type lectin CLEC-2, expressed by dendritic cells. Inflamed LNs maintain conduit size exclusion, and flow is disrupted but persists, indicating the robustness of this structure despite rapid tissue expansion. We show how dynamic communication between peripheral tissues and LNs provides a mechanism to prevent inflammation-induced fibrosis in lymphoid tissue.


Assuntos
Matriz Extracelular/imunologia , Fibroblastos/imunologia , Linfonodos/imunologia
14.
F1000Res ; 72018.
Artigo em Inglês | MEDLINE | ID: mdl-30345002

RESUMO

Rhinoviruses are the most common cause of upper respiratory tract infections. However, they can induce exacerbations of chronic obstructive pulmonary disease and asthma, bronchiolitis in infants, and significant lower respiratory tract infections in children, the immunosuppressed, and the elderly. The large number of rhinovirus strains (currently about 160) and their antigenic diversity are significant obstacles in vaccine development. The phenotype of immune responses induced during rhinovirus infection can affect disease severity. Recognition of rhinovirus and a balance of innate responses are important factors in rhinovirus-induced morbidity. Immune responses to rhinovirus infections in healthy individuals are typically of the T helper type 1 (Th1) phenotype. However, rhinovirus-driven asthma exacerbations are additionally characterised by an amplified Th2 immune response and airway neutrophilia. This commentary focuses on recent advances in understanding immunity toward rhinovirus infection and how innate and adaptive immune responses drive rhinovirus-induced asthma exacerbations.


Assuntos
Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Imunidade Adaptativa , Asma/imunologia , Humanos , Imunidade Inata , Células Th1/imunologia , Células Th2/imunologia
15.
Front Immunol ; 8: 259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344581

RESUMO

Immune responses to lung infections must be tightly regulated in order to permit pathogen eradication while maintaining organ function. Exuberant or dysregulated inflammation can impair gas exchange and underlies many instances of lung disease. An important driver of inflammation in the lung is the interferon (IFN) response. Type I IFNs are antiviral cytokines that induce a large range of proteins that impair viral replication in infected cells. This cell-intrinsic action plays a crucial role in protecting the lungs from spread of respiratory viruses. However, type I IFNs have also recently been found to be central to the initiation of lung inflammatory responses, by inducing recruitment and activation of immune cells. This helps control virus burden but can cause detrimental immunopathology and contribute to disease severity. Furthermore, there is now increasing evidence that type I IFNs are not only induced after viral infections but also after infection with bacteria and fungi. The pro-inflammatory function of type I IFNs in the lung opens up the possibility of immune modulation directed against this antiviral cytokine family. In this review, the initiation and signaling of type I IFNs as well as their role in driving and maintaining lung inflammation will be discussed.

16.
J Innate Immun ; 8(5): 452-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27423203

RESUMO

Respiratory syncytial virus (RSV) is a common cause of lower respiratory tract infections. Immunity to RSV is initiated upon detection of the virus by pattern recognition receptors, such as RIG-I-like receptors. RIG-I-like receptors signal via MAVS to induce the synthesis of proinflammatory mediators, including type I interferons (IFNs), which trigger and shape antiviral responses and protect cells from infection. Alveolar macrophages (AMs) are amongst the first cells to encounter invading viruses and the ones producing type I IFNs. However, it is unclear whether IFNs act to prevent AMs from serving as vehicles for viral replication. In this study, primary AMs from MAVS (Mavs-/-)- or type I IFN receptor (Ifnar1-/-)-deficient mice were exposed to RSV ex vivo. Wild-type (wt) AMs but not Mavs-/- and Ifnar1-/- AMs produced inflammatory mediators in response to RSV. Furthermore, Mavs-/- and Ifnar1-/- AMs accumulated more RSV proteins than wt AMs, but the infection was abortive. Thus, RIG-I-like receptor-MAVS and IFNAR signalling are important for the induction of proinflammatory mediators from AMs upon RSV infection, but this signalling is not central for controlling viral replication. The ability to restrict viral replication makes AMs ideal sensors of RSV infection and important initiators of immune responses in the lung.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Macrófagos Alveolares/imunologia , Receptor de Interferon alfa e beta/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Interferon Tipo I/metabolismo , Macrófagos Alveolares/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Transdução de Sinais , Replicação Viral
17.
Sci Rep ; 5: 18533, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26688048

RESUMO

Pattern recognition receptors (PRRs) and cytokine receptors are key players in the initiation of immune responses to infection. PRRs detecting viral RNA, such as toll like receptor (TLR)-3, -7/8, and RIG-I like receptors (RLRs; RIG-I and MDA-5), as well as cytokine receptors such as interleukin 1 receptor (IL-1R), have been implicated in responses to RNA viruses that infect the airways. The latter includes respiratory syncytial virus (RSV), a human pathogen that can cause severe lower respiratory tract infections, especially in infants. To evaluate the collective contribution of PRRs and IL-1R signalling to RSV immunity, we generated Myd88/Trif/Mavs(-/-) mice that are deficient in signalling by all TLRs, RLRs and IL-1R, as well as other cytokine receptors such as IL-18 receptor. Early production of pro-inflammatory mediators and lung infiltration by immune cells were completely abrogated in infected Myd88/Trif/Mavs(-/-) mice. However, RSV-specific CD8(+) T cells were elicited and recruited into the lungs and airways. Consistent with these findings, Myd88/Trif/Mavs(-/-) mice survived RSV infection but displayed higher viral load and weight loss. These data highlight an unappreciated level of redundancy in pathways that couple innate virus sensing to adaptive immunity, providing the host with remarkable resilience to infection.


Assuntos
Infecções/genética , Receptores Tipo II de Interleucina-1/genética , Receptores de Interleucina-18/genética , Infecções por Vírus Respiratório Sincicial/genética , Infecções Respiratórias/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Humanos , Infecções/imunologia , Infecções/virologia , Camundongos , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , Receptores de Interleucina-18/imunologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/patogenicidade , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/patologia , Carga Viral
18.
J Exp Med ; 212(5): 699-714, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25897172

RESUMO

Type I interferons (IFNs) are important for host defense from viral infections, acting to restrict viral production in infected cells and to promote antiviral immune responses. However, the type I IFN system has also been associated with severe lung inflammatory disease in response to respiratory syncytial virus (RSV). Which cells produce type I IFNs upon RSV infection and how this directs immune responses to the virus, and potentially results in pathological inflammation, is unclear. Here, we show that alveolar macrophages (AMs) are the major source of type I IFNs upon RSV infection in mice. AMs detect RSV via mitochondrial antiviral signaling protein (MAVS)-coupled retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs), and loss of MAVS greatly compromises innate immune restriction of RSV. This is largely attributable to loss of type I IFN-dependent induction of monocyte chemoattractants and subsequent reduced recruitment of inflammatory monocytes (infMo) to the lungs. Notably, the latter have potent antiviral activity and are essential to control infection and lessen disease severity. Thus, infMo recruitment constitutes an important and hitherto underappreciated, cell-extrinsic mechanism of type I IFN-mediated antiviral activity. Dysregulation of this system of host antiviral defense may underlie the development of RSV-induced severe lung inflammation.


Assuntos
Imunidade Inata , Macrófagos Alveolares/imunologia , Pneumonia Viral/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sinciciais Respiratórios/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Macrófagos Alveolares/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Pneumonia Viral/genética , Pneumonia Viral/patologia , Receptores de Superfície Celular , Infecções por Vírus Respiratório Sincicial/genética , Infecções por Vírus Respiratório Sincicial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA