Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(13): e2308167, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37953455

RESUMO

Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.


Assuntos
Degeneração do Disco Intervertebral , Nanopartículas , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Gasderminas , Inflamassomos/metabolismo , Mitocôndrias/metabolismo , Polifenóis/farmacologia
2.
Semin Cancer Biol ; 86(Pt 2): 396-419, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35700939

RESUMO

Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.


Assuntos
Dendrímeros , Nanopartículas , Neoplasias , Humanos , Dendrímeros/química , Dendrímeros/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Nanotecnologia , Neoplasias/tratamento farmacológico
3.
Med Res Rev ; 43(4): 1141-1200, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929669

RESUMO

Epithelial-mesenchymal transition (EMT) is a complex process with a primordial role in cellular transformation whereby an epithelial cell transforms and acquires a mesenchymal phenotype. This transformation plays a pivotal role in tumor progression and self-renewal, and exacerbates resistance to apoptosis and chemotherapy. EMT can be initiated and promoted by deregulated oncogenic signaling pathways, hypoxia, and cells in the tumor microenvironment, resulting in a loss-of-epithelial cell polarity, cell-cell adhesion, and enhanced invasive/migratory properties. Numerous transcriptional regulators, such as Snail, Slug, Twist, and ZEB1/ZEB2 induce EMT through the downregulation of epithelial markers and gain-of-expression of the mesenchymal markers. Additionally, signaling cascades such as Wnt/ß-catenin, Notch, Sonic hedgehog, nuclear factor kappa B, receptor tyrosine kinases, PI3K/AKT/mTOR, Hippo, and transforming growth factor-ß pathways regulate EMT whereas they are often deregulated in cancers leading to aberrant EMT. Furthermore, noncoding RNAs, tumor-derived exosomes, and epigenetic alterations are also involved in the modulation of EMT. Therefore, the regulation of EMT is a vital strategy to control the aggressive metastatic characteristics of tumor cells. Despite the vast amount of preclinical data on EMT in cancer progression, there is a lack of clinical translation at the therapeutic level. In this review, we have discussed thoroughly the role of the aforementioned transcription factors, noncoding RNAs (microRNAs, long noncoding RNA, circular RNA), signaling pathways, epigenetic modifications, and tumor-derived exosomes in the regulation of EMT in cancers. We have also emphasized the contribution of EMT to drug resistance and possible therapeutic interventions using plant-derived natural products, their semi-synthetic derivatives, and nano-formulations that are described as promising EMT blockers.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Humanos , Transição Epitelial-Mesenquimal/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Hedgehog/metabolismo , Neoplasias/metabolismo , Fatores de Transcrição , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
4.
Mol Cancer ; 22(1): 138, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596643

RESUMO

The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Neoplasias/tratamento farmacológico , Neoplasias/genética
5.
Mol Pharm ; 20(3): 1531-1548, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36763486

RESUMO

The blood-brain barrier (BBB) acts as a physical/biochemical barrier that protects brain parenchyma from potential hazards exerted by different xenobiotics found in the systemic circulation. This barrier is created by "a lipophilic gate" as well as a series of highly organized influx/efflux mechanisms. The BBB bottleneck adversely affects the efficacy of chemotherapeutic agents in treating different CNS malignancies such as glioblastoma, an aggressive type of cancer affecting the brain. In the present study, mesoporous silica nanoparticles (MSNs) were conjugated with the transactivator of transcription (TAT) peptide, a cell-penetrating peptide, to produce MSN-NH-TAT with the aim of improving methotrexate (MTX) penetration into the brain. The TAT-modified nanosystem was characterized by Fourier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and N2 adsorption-desorption analysis. In vitro hemolysis and cell viability studies confirmed the biocompatibility of the MSN-based nanocarriers. In addition, in vivo studies showed that the MTX-loaded MSN-NH-TAT improved brain-to-plasma concentration ratio, brain uptake clearance, and the drug's blood terminal half-life, compared with the use of free MTX. Taken together, the results of the present study indicate that MSN functionalization with TAT is crucial for delivery of MTX into the brain. The present nanosystem represents a promising alternative drug carrier to deliver MTX into the brain via overcoming the BBB.


Assuntos
Peptídeos Penetradores de Células , Glioblastoma , Nanopartículas , Humanos , Metotrexato , Dióxido de Silício/química , Portadores de Fármacos/química , Nanopartículas/química , Encéfalo , Sistemas de Liberação de Medicamentos/métodos , Porosidade
6.
Environ Res ; 235: 116700, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479214

RESUMO

A novel biodegradable dextrin-based nanocomposite, involving polypyrrole (PPy) and hydrophilic dextrin (Dex) (PPy@Dex) was prepared using in-situ radical chemical polymerization technique. The obtained PPy@Dex bionanocomposite was fully characterized by FT-IR, XRD, FESEM, and DSC methods. The exceptional properties such as biocompatibility, high surface area, the proper functional group on the surface, and outstanding electrical conductivity of synthesized bionanocomposite made it a superior candidate over biomolecules immobilization. Electrochemical observations revealed that the PPy@Dex-coated glassy carbon electrode (GCE) demonstrated improved performance, making it a suitable substrate for immobilizing hemoglobin (Hb) and constructing an efficient biosensor. The resulting biosensor, named Hb-PPy@Dex/GCE, exhibited high activity in the reduction of hydrogen peroxide (H2O2). Amperometric examinations demonstrated an extensive linear range from 2 to 350 µM for Hb-PPy@Dex/GCE. The detection limit of the proposed approach was calculated to be 0.54 µM, following the S/N = 3 protocol.


Assuntos
Peróxido de Hidrogênio , Polímeros , Polímeros/química , Peróxido de Hidrogênio/química , Dextrinas , Espectroscopia de Infravermelho com Transformada de Fourier , Pirróis/química , Hemoglobinas , Carbono/química
7.
Environ Res ; 237(Pt 2): 116980, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37648188

RESUMO

Melanoma, an aggressive malignant tumor originating from melanocytes in humans, is on the rise globally, with limited non-surgical treatment options available. Recent advances in understanding the molecular and cellular mechanisms underlying immune escape, tumorigenesis, drug resistance, and cancer metastasis have paved the way for innovative therapeutic strategies. Combination therapy targeting multiple pathways simultaneously has been shown to be promising in treating melanoma, eliciting favorable responses in most melanoma patients. CAR T-cells, engineered to overcome the limitations of human leukocyte antigen (HLA)-dependent tumor cell detection associated with T-cell receptors, offer an alternative approach. By genetically modifying apheresis-collected allogeneic or autologous T-cells to express chimeric antigen receptors, CAR T-cells can appreciate antigens on cell surfaces independently of major histocompatibility complex (MHC), providing a significant cancer cell detection advantage. However, identifying the most effective target antigen is the initial step, as it helps mitigate the risk of toxicity due to "on-target, off-tumor" and establishes a targeted therapeutic strategy. Furthermore, evaluating signaling pathways and critical molecules involved in melanoma pathogenesis remains insufficient. This study emphasizes the novel approaches of CAR T-cell immunoediting and presents new insights into the molecular signaling pathways associated with melanoma.

8.
Environ Res ; 238(Pt 1): 116933, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37652218

RESUMO

Cardiovascular diseases (CVDs) present a significant threat to health, with traditional therapeutics based treatment being hindered by inefficiencies, limited biological effects, and resistance to conventional drug. Addressing these challenges requires advanced approaches for early disease diagnosis and therapy. Nanotechnology and nanomedicine have emerged as promising avenues for personalized CVD diagnosis and treatment through theranostic agents. Nanoparticles serve as nanodevices or nanocarriers, efficiently transporting drugs to injury sites. These nanocarriers offer the potential for precise drug and gene delivery, overcoming issues like bioavailability and solubility. By attaching specific target molecules to nanoparticle surfaces, controlled drug release to targeted areas becomes feasible. In the field of cardiology, nanoplatforms have gained popularity due to their attributes, such as passive or active targeting of cardiac tissues, enhanced sensitivity and specificity, and easy penetration into heart and artery tissues due to their small size. However, concerns persist about the immunogenicity and cytotoxicity of nanomaterials, necessitating careful consideration. Nanoparticles also hold promise for CVD diagnosis and imaging, enabling straightforward diagnostic procedures and real-time tracking during therapy. Nanotechnology has revolutionized cardiovascular imaging, yielding multimodal and multifunctional vehicles that outperform traditional methods. The paper provides an overview of nanomaterial delivery routes, targeting techniques, and recent advances in treating, diagnosing, and engineering tissues for CVDs. It also discusses the future potential of nanomaterials in CVDs, including theranostics, aiming to enhance cardiovascular treatment in clinical practice. Ultimately, refining nanocarriers and delivery methods has the potential to enhance treatment effectiveness, minimize side effects, and improve patients' well-being and outcomes.


Assuntos
Doenças Cardiovasculares , Nanopartículas , Humanos , Engenharia Tecidual , Nanomedicina/métodos , Nanotecnologia , Preparações Farmacêuticas , Diagnóstico Precoce
9.
Environ Res ; 238(Pt 1): 117080, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683787

RESUMO

Our investigation aimed to create and manufacture an electrochemical impedance sensor with the purpose of improving the detection efficiency of melatonin (ME). To achieve this objective, we employed gold nanoparticles coated on polydopamine formed in glassy carbon electrodes (AuNPs/PDA/GCE) as a means to enhance the sensor's capabilities. A novel approach employing the signal-off strategy and electrochemical impedance spectroscopy (EIS) technique was utilized to determine ME. When the AuNPs/PDA/GCE electrode was immersed in a buffered solution containing ME, and the oxidation current of AuNPs was recorded, it was observed that the oxidation current of AuNPs decreased upon the introduction of ME molecules. The decrease in electrical current can be ascribed to the inhibitory impact of ME molecule adsorption on the electrode surface with applying -0.2 V for 150 s in acetate buffer solution (ABS) (pH, 5) through various mechanisms, which hinders the electron transfer process crucial for AuNPs oxidation. Consequently, by utilizing EIS, various concentrations of ME were quantified spanning from 1 to 18 pM. Moreover, the ME sensor achieved an impressive detection limit of 0.32 pM, indicating its remarkable sensitivity in detecting low concentrations of ME. Importantly, these novel sensors demonstrated exceptional attributes in terms of sensitivity, specificity, stability, and repeatability. The outstanding performance of these sensors, coupled with their desirable attributes, establishes their considerable potential for a wide range of practical applications. These applications encompass various fields such as clinical diagnostics, pharmaceutical analysis, environmental monitoring, and industrial quality control, where accurate and sensitive detection of ME is of utmost importance.


Assuntos
Melatonina , Nanopartículas Metálicas , Humanos , Ouro/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Nanopartículas Metálicas/química , Carbono/química , Preparações Farmacêuticas
10.
Environ Res ; 238(Pt 1): 117083, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690629

RESUMO

Liquid biopsy includes the isolating and analysis of non-solid biological samples enables us to find new ways for molecular profiling, prognostic assessment, and better therapeutic decision-making in cancer patients. Despite the conventional theory of tumor development, a non-vertical transmission of DNA has been reported among cancer cells and between cancer and normal cells. The phenomenon referred to as horizontal gene transfer (HGT) has the ability to amplify the advancement of tumors by disseminating genes that encode molecules conferring benefits to the survival or metastasis of cancer cells. Currently, common liquid biopsy approaches include the analysis of extracellular vesicles (EVs) and tumor-free DNA (tfDNA) derived from primary tumors and their metastatic sites, which are well-known HGT mediators in cancer cells. Current technological and molecular advances expedited the high-throughput and high-sensitive HGT materials analyses by using new technologies, such as microfluidics in liquid biopsies. This review delves into the convergence of microfluidic-based technologies and the investigation of Horizontal Gene Transfer (HGT) materials in cancer liquid biopsy. The integration of microfluidics offers unprecedented advantages such as high sensitivity, rapid analysis, and the ability to analyze rare cell populations. These attributes are instrumental in detecting and characterizing CTCs, circulating nucleic acids, and EVs, which are carriers of genetic cargo that could potentially undergo HGT. The phenomenon of HGT in cancer has raised intriguing questions about its role in driving genomic diversity and acquired drug resistance. By leveraging microfluidic platforms, researchers have been able to capture and analyze individual cells or genetic material with enhanced precision, shedding light on the potential transfer of genetic material between cancer cells and surrounding stromal cells. Furthermore, the application of microfluidics in single-cell sequencing has enabled the elucidation of the genetic changes associated with HGT events, providing insights into the evolution of tumor genomes. This review also discusses the challenges and opportunities in studying HGT materials using microfluidic-based technologies. In conclusion, microfluidic-based technologies have significantly advanced the field of cancer liquid biopsy, enabling the sensitive and accurate detection of HGT materials. As the understanding of HGT's role in tumor evolution and therapy resistance continues to evolve, the synergistic integration of microfluidics and HGT research promises to provide valuable insights into cancer biology, with potential implications for precision oncology and therapeutic strategies.


Assuntos
Microfluídica , Neoplasias , Humanos , Transferência Genética Horizontal , Medicina de Precisão , Biópsia Líquida , DNA
11.
Environ Res ; 238(Pt 1): 117026, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659642

RESUMO

Exposure to thallium (Tl), a noxious heavy metal, poses significant health risks to both humans and animals upon ingestion. Therefore, monitoring Tl levels in the environment is crucial to prevent human exposure and reduce the risk of developing severe health problems. This paper presents the development of a highly sensitive Tl ions sensor through surface modification of a glassy carbon electrode with a nanocomposite comprising MnO2 magnetic sepiolite and multi-walled carbon nanotubes (MnO2@Fe3O4/Sep/MWCNT/GCE). Multiple methodologies were employed to assess the performance of the newly developed sensor. By employing square wave anodic stripping voltammetry (SWASV) to optimize the measurement conditions, notable enhancements were observed in the stripping peak currents of Tl (I) on the MnO2@Fe3O4/Sep/MWCNT/GCE surface. The effectiveness of the nanocomposite in facilitating electron transfer between the Tl (I) ions (guest) and the electrode (host) was demonstrated from the enhanced signals observed at the different modified electrode surfaces under optimal conditions. The developed sensor displayed a wide linear range of 0.1-1500 ppb for Tl (I) and a low detection limit of 0.03 ppb for Tl (I). It was found to be selective for Tl (I) ions while remaining unaffected by interfering non-target ions in the presence of the target ions. Despite its simple preparation procedure, the modified electrode exhibited high stability and excellent reproducibility for measuring Tl (I). The outstanding electroanalytical performances of the MnO2@Fe3O4/Sep/MWCNT/GCE electrode enabled its successful use as an ultrasensitive sensor for determining trace amounts of Tl in environmental samples.


Assuntos
Nanotubos de Carbono , Tálio , Animais , Humanos , Reprodutibilidade dos Testes , Compostos de Manganês , Limite de Detecção , Óxidos
12.
Environ Res ; 238(Pt 1): 116979, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37660871

RESUMO

Calcium (Ca2+) homeostasis is essential for maintaining physiological processes in the body. Disruptions in Ca2+ signaling can lead to various pathological conditions including inflammation, fibrosis, impaired immune function, and accelerated senescence. Hypocalcemia, a common symptom in diseases such as acute respiratory distress syndrome (ARDS), cancer, septic shock, and COVID-19, can have both potential protective and detrimental effects. This article explores the multifaceted role of Ca2+ dysregulation in inflammation, fibrosis, impaired immune function, and accelerated senescence, contributing to disease severity. Targeting Ca2+ signaling pathways may provide opportunities to develop novel therapeutics for age-related diseases and combat viral infections. However, the role of Ca2+ in viral infections is complex, and evidence suggests that hypocalcemia may have a protective effect against certain viruses, while changes in Ca2+ homeostasis can influence susceptibility to viral infections. The effectiveness and safety of Ca2+ supplements in COVID-19 patients remain a subject of ongoing research and debate. Further investigations are needed to understand the intricate interplay between Ca2+ signaling and disease pathogenesis.


Assuntos
COVID-19 , Hipocalcemia , Neoplasias , Sepse , Humanos , Sepse/diagnóstico , Sepse/terapia , Inflamação , Fibrose , Teste para COVID-19
13.
Environ Res ; 238(Pt 1): 117132, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37714365

RESUMO

M13 phages possessing filamentous phage genomes offer the benefits of selective display of molecular moieties and delivery of therapeutic agent payloads with a tolerable safety profile. M13 phage-displayed technology for resembling antigen portions led to the discovery of mimetic epitopes that applied to antibody-based therapy and could be useful in the design of anticancer vaccines. To date, the excremental experiences have engaged the M13 phage in the development of innovative biosensors for detecting biospecies, biomolecules, and human cells with an acceptable limit of detection. Addressing the emergence of antibiotic-resistant bacteria, M13 phages are potent for packaging the programmed gene editing tools, such as CRISPR/Cas, to target multiple antimicrobial genes. Moreover, their display potential in combination with nanoparticles inspires new approaches for engineering targeted theragnostic platforms targeting multiple cellular biomarkers in vivo. In this review, we present the available data on optimizing the use of bacteriophages with a focus on the to date experiences with M13 phages, either as monoagent or as part of combination regimens in the practices of biosensors, vaccines, bactericidal, modeling of specific antigen epitopes, and phage-guided nanoparticles for drug delivery systems. Despite increasing research interest, a deep understanding of the underlying biological and genetic behaviors of M13 phages is needed to enable the full potential of these bioagents in biomedicine, as discussed here. We also discuss some of the challenges that have thus far limited the development and practical marketing of M13 phages.


Assuntos
Bacteriófago M13 , Vacinas , Humanos , Bacteriófago M13/genética , Preparações Farmacêuticas , Terapia Genética , Epitopos
14.
Environ Res ; 237(Pt 2): 117084, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683792

RESUMO

The most important reason for death from ovarian cancer is the late diagnosis of this disease. The standard treatment of ovarian cancer includes surgery and chemotherapy based on platinum, which is associated with side effects for the body. Due to the nonspecific nature of clinical symptoms, developing a platform for early detection of this disease is needed. In recent decades, the advancements of microfluidic devices and systems have provided several advantages for diagnosing ovarian cancer. Designing and manufacturing new platforms using specialized technologies can be a big step toward improving the prevention, diagnosis, and treatment of this group of diseases. Organ-on-a-chip microfluidic devices are increasingly used as a promising platform in cancer research, with a focus on specific biological aspects of the disease. This review focusing on ovarian cancer and microfluidic application technologies in its diagnosis. Additionally, it discusses microfluidic platforms and their potential future perspectives in advancing ovarian cancer diagnosis.

15.
AAPS PharmSciTech ; 23(1): 57, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35048234

RESUMO

The aim, as proof of concept, was to optimize niosomal formulations of tamoxifen in terms of size, morphology, encapsulation efficiency, and release kinetics for further treatment of the breast cancer (BC). Different assays were carried out to evaluate the pro-apoptotic and cytotoxicity impact of tamoxifen-loaded niosomes in two BC cells, MDA-MB-231 and SKBR3. In this study, tamoxifen was loaded in niosomes after optimization in the formulation. The formulation of niosomes supported maximized drug entrapment and minimized their size. The novel formulation showed improvement in storage stability, and after 60 days only, small changes in size, polydispersity index, and drug entrapment were observed. Besides, a pH-dependent release pattern of formulated niosomes displayed slow release at physiological pH (7.4) and a considerable increase of release at acidic pH (5.4), making them a promising candidate for drug delivery in the BC treatment. The cytotoxicity study exhibited high biocompatibility with MCF10A healthy cells, while remarkable inhibitory effects were observed after treatment of cancerous lines, MDA-MB-231, and SKBR3 cells. The IC50 values for the tamoxifen-loaded niosomes were significantly less than other groups. Moreover, treatment with drug-loaded niosomes significantly changed the gene expression pattern of BC cells. Statistically significant down-regulation of cyclin D, cyclin E, VEGFR-1, MMP-2, and MMP-9 genes and up-regulation of caspase-3 and caspase-9 were observed. These results were in correlation with cell cycle arrest, lessoned migration capacity, and increased caspase activity and apoptosis induction in cancerous cells. Optimization in the formulation of tamoxifen-loaded niosomes can make them a novel candidate for drug delivery in BC treatment.


Assuntos
Neoplasias da Mama , Lipossomos , Apoptose , Neoplasias da Mama/tratamento farmacológico , Pontos de Checagem do Ciclo Celular , Feminino , Humanos , Tamanho da Partícula , Tamoxifeno/farmacologia
16.
Expert Rev Mol Med ; 23: e22, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34906269

RESUMO

Biomacromolecules have gained much attention as biomedicine carriers in recent years due to their remarkable biophysical and biochemical properties including sustainability, non-toxicity, biocompatibility, biodegradability, long systemic circulation time and ability to target. Recent developments in a variety of biological functions of biomacromolecules and progress in the study of biological drug carriers suggest that these carriers may have advantages over carriers of synthetic materials in terms of half-life, durability, protection and manufacturing facility. Despite the full pledge advancements in the applications of biomacromolecules, its clinical use is hindered by certain factors that allow the pre-mature release of loaded cargos before reaching the target site. The delivery therapeutics are degraded by systemic nucleases, cleared by reticulo-endothelial system, cleared by pulmonary mucus cilia or engulfed by lysosome during cellular uptake that has led to the failure of clinical therapy. It clearly indicates that there is a wide range of gaps in the results of experimental work and clinical applications of biomacromolecules. This review focuses mainly on the barriers (intracellular/extracellular) and hurdles to the delivery of biomacromolecules with special emphasis on siRNA as well as the delivery of antisense oligos in multiple pulmonary diseases, particularly focusing on lung cancer. Also, the challenges posed to such delivery and possible solutions have been highlighted.


Assuntos
Portadores de Fármacos , Pneumopatias , Sistemas de Liberação de Medicamentos , Humanos , Pulmão , RNA Interferente Pequeno/genética
17.
Small ; 17(17): e2007073, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710754

RESUMO

Metal-based nanoentities, apart from being indispensable research tools, have found extensive use in the industrial and biomedical arena. Because their biological impacts are governed by factors such as size, shape, and composition, such issues must be taken into account when these materials are incorporated into multi-component ensembles for clinical applications. The size and shape (rods, wires, sheets, tubes, and cages) of metallic nanostructures influence cell viability by virtue of their varied geometry and physicochemical interactions with mammalian cell membranes. The anisotropic properties of nonspherical metal-based nanoarchitectures render them exciting candidates for biomedical applications. Here, the size-, shape-, and composition-dependent properties of nonspherical metal-based nanoarchitectures are reviewed in the context of their potential applications in cancer diagnostics and therapeutics, as well as, in regenerative medicine. Strategies for the synthesis of nonspherical metal-based nanoarchitectures and their cytotoxicity and immunological profiles are also comprehensively appraised.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Anisotropia , Sobrevivência Celular , Metais
18.
Small ; 17(34): e2007840, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33899324

RESUMO

A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.g., pH and temperature) or external triggers (e.g., magnetic field and light) are highlighted. Readers are then introduced to selective adsorbents that selectively capture materials of interest. This is followed by a discussion of self-healing and self-cleaning adsorbents. Finally, the review ends with research gaps in material designs.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Purificação da Água , Adsorção , Metais , Poluentes Químicos da Água/análise
19.
Mater Today (Kidlington) ; 47: 206-222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36338772

RESUMO

Microneedle (MN) patches consisting of miniature needles have emerged as a promising tool to perforate the stratum corneum and translocate biomolecules into the dermis in a minimally invasive manner. Stimuli-responsive MN patches represent emerging drug delivery systems that release cargos on-demand as a response to internal or external triggers. In this review, a variety of stimuli-responsive MN patches for controlled drug release are introduced, covering the mechanisms of action toward different indications. Future opportunities and challenges with respect to clinical translation are also discussed.

20.
Pharmacol Res ; 167: 105575, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33771701

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor and its induction is of significant importance for protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) stimulate Nrf2 signaling, enhancing the activity of antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase. These enzymes are associated with retarding oxidative stress. On the other hand, Nrf2 activation in cancer cells is responsible for the development of chemoresistance due to disrupting oxidative mediated-cell death by reducing ROS levels. Cisplatin (CP), cis-diamminedichloroplatinum(II), is a potent anti-tumor agent extensively used in cancer therapy, but its frequent application leads to the development of chemoresistance as well. In the present study, association of Nrf2 signaling with chemoresistance to CP and protection against its deleterious effects is discussed. Anti-tumor compounds, mainly phytochemicals, retard chemoresistance by suppressing Nrf2 signaling. Upstream mediators such as microRNAs can regulate Nrf2 expression during CP chemotherapy regimens. Protection against side effects of CP is mediated via activating Nrf2 signaling and its downstream targets activating antioxidant defense system. Protective agents that activate Nrf2 signaling, can ameliorate CP-mediated ototoxicity, nephrotoxicity and neurotoxicity. Reducing ROS levels and preventing cell death are the most important factors involved in alleviating CP toxicity upon Nrf2 activation. As pre-clinical experiments advocate the role of Nrf2 in chemoprotection and CP resistance, translating these findings to the clinic can provide a significant progress in treatment of cancer patients.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Humanos , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA