Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Rheum Dis ; 81(2): 268-277, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34750102

RESUMO

OBJECTIVES: Systemic sclerosis (SSc) is a complex disease of unknown aetiology in which inflammation and fibrosis lead to multiple organ damage. There is currently no effective therapy that can halt the progression of fibrosis or reverse it, thus studies that provide novel insights into disease pathogenesis and identify novel potential therapeutic targets are critically needed. METHODS: We used global gene expression and genome-wide DNA methylation analyses of dermal fibroblasts (dFBs) from a unique cohort of twins discordant for SSc to identify molecular features of this pathology. We validated the findings using in vitro, ex vivo and in vivo models. RESULTS: Our results revealed distinct differentially expressed and methylated genes, including several transcription factors involved in stem cell differentiation and developmental programmes (KLF4, TBX5, TFAP2A and homeobox genes) and the microRNAs miR-10a and miR-10b which target several of these deregulated genes. We show that KLF4 expression is reduced in SSc dFBs and its expression is repressed by TBX5 and TFAP2A. We also show that KLF4 is antifibrotic, and its conditional knockout in fibroblasts promotes a fibrotic phenotype. CONCLUSIONS: Our data support a role for epigenetic dysregulation in mediating SSc susceptibility in dFBs, illustrating the intricate interplay between CpG methylation, miRNAs and transcription factors in SSc pathogenesis, and highlighting the potential for future use of epigenetic modifiers as therapies.


Assuntos
Fibroblastos/patologia , Regulação da Expressão Gênica/fisiologia , Fator 4 Semelhante a Kruppel/metabolismo , Escleroderma Sistêmico , Pele/patologia , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Fator 4 Semelhante a Kruppel/genética , MicroRNAs/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Pele/metabolismo , Proteínas com Domínio T/metabolismo , Fator de Transcrição AP-2/metabolismo , Transcriptoma
2.
Ann Rheum Dis ; 79(4): 507-517, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32041748

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is characterised by autoimmune activation, tissue and vascular fibrosis in the skin and internal organs. Tissue fibrosis is driven by myofibroblasts, that are known to maintain their phenotype in vitro, which is associated with epigenetically driven trimethylation of lysine 27 of histone 3 (H3K27me3). METHODS: Full-thickness skin biopsies were surgically obtained from the forearms of 12 adult patients with SSc of recent onset. Fibroblasts were isolated and cultured in monolayers and protein and RNA extracted. HOX transcript antisense RNA (HOTAIR) was expressed in healthy dermal fibroblasts by lentiviral induction employing a vector containing the specific sequence. Gamma secretase inhibitors were employed to block Notch signalling. Enhancer of zeste 2 (EZH2) was blocked with GSK126 inhibitor. RESULTS: SSc myofibroblasts in vitro and SSc skin biopsies in vivo display high levels of HOTAIR, a scaffold long non-coding RNA known to direct the histone methyltransferase EZH2 to induce H3K27me3 in specific target genes. Overexpression of HOTAIR in dermal fibroblasts induced EZH2-dependent increase in collagen and α-SMA expression in vitro, as well as repression of miRNA-34A expression and consequent NOTCH pathway activation. Consistent with these findings, we show that SSc dermal fibroblast display decreased levels of miRNA-34a in vitro. Further, EZH2 inhibition rescued miRNA-34a levels and mitigated the profibrotic phenotype of both SSc and HOTAIR overexpressing fibroblasts in vitro. CONCLUSIONS: Our data indicate that the EZH2-dependent epigenetic phenotype of myofibroblasts is driven by HOTAIR and is linked to miRNA-34a repression-dependent activation of NOTCH signalling.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Fibroblastos/metabolismo , MicroRNAs/metabolismo , Miofibroblastos/metabolismo , RNA Longo não Codificante/metabolismo , Receptores Notch/metabolismo , Escleroderma Sistêmico/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Epigênese Genética , Fibrose , Código das Histonas , Humanos , Indóis/farmacologia , Fenótipo , Piridonas/farmacologia , Receptores Notch/antagonistas & inibidores , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Transdução de Sinais , Pele/citologia , Pele/metabolismo , Pele/patologia
3.
J Proteomics ; 242: 104243, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33930553

RESUMO

TGFß1 is a profibrotic mediator that contributes to a broad spectrum of pathologies, including systemic sclerosis-associated pulmonary fibrosis (SSc-PF). However, the secretome of TGFß1-stimulated primary human normal lung (NL) fibroblasts has not been well characterized. Using fluorescent 2-dimensional gel electrophoresis (2D-PAGE) and differential gel electrophoresis (DIGE) followed by Mass Spectrometry, we identified 37 differentially secreted proteins in the conditioned media of TGFß1-activated NL fibroblasts and generated a protein-protein association network of the TGFß1 secretome using STRING. Functional enrichment revealed that several biological processes and pathways characteristic of PF were enriched. Additionally, by comparing the TGFß1 secretome of NL fibroblasts to proteomic biomarkers from biological fluids of systemic sclerosis (SSc) patients, we identified 11 overlapping proteins. Together our data validate the TGFß1-induced secretome of NL fibroblasts as a valid in vitro model that reflects SSc biomarkers and identify potential therapeutic targets for SSc-PF. SIGNIFICANCE: All proteins secreted by fibroblasts into the extracellular space, representing the secretome, promote cell-to-cell communication as well as tissue homeostasis, immune mechanisms, developmental regulation, proteolysis, development of the extracellular matrix (ECM) and cell adhesion. Therefore, it is crucial to understand how TGFß1, a well-known profibrotic cytokine, modulates the secretome of pulmonary fibroblasts, and how the TGFß1-induced secretome resembles biomarkers in SSc. Using functional enrichment analysis, key pathways and hub proteins can be identified and studied as potential therapeutic targets for pulmonary fibrosis.


Assuntos
Proteômica , Escleroderma Sistêmico , Biomarcadores , Fibroblastos , Humanos , Pulmão
4.
PLoS One ; 12(6): e0179917, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28651005

RESUMO

The murine bleomycin (BLM)-induced fibrosis model is the most widely used in systemic sclerosis (SSc) studies. It has been reported that systemic delivery of BLM via continuous diffusion from subcutaneously implanted osmotic minipumps can cause fibrosis of the skin, lungs, and other internal organs. However, the mouse strain, dosage of BLM, administration period, and additional important features differ from one report to the next. In this study, by employing the pump model in C57BL/6J mice, we show a dose-dependent increase in lung fibrosis by day 28 and a transient increase in dermal thickness. Dermal thickness and the level of collagen in skin treated with high-dose BLM was significantly higher than in skin treated with low dose BLM or vehicle. A reduction in the thickness of the adipose layer was noted in both high and low dose groups at earlier time points suggesting that the loss of the fat layer precedes the onset of fibrosis. High-dose BLM also induced dermal fibrosis and increased expression of fibrosis-associated genes ex vivo in human skin, thus confirming and extending the in vivo findings, and demonstrating that a human organ culture model can be used to assess the effect of BLM on skin. In summary, our findings suggest that the BLM pump model is an attractive model to analyze the underlying mechanisms of fibrosis and test the efficacy of potential therapies. However, the choice of mouse strain, duration of BLM administration and dose must be carefully considered when using this model.


Assuntos
Escleroderma Sistêmico/etiologia , Animais , Bleomicina/administração & dosagem , Bleomicina/toxicidade , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Fator de Crescimento do Tecido Conjuntivo/genética , Modelos Animais de Doenças , Fibronectinas/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Bombas de Infusão Implantáveis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Esclerodermia Localizada/etiologia , Esclerodermia Localizada/genética , Esclerodermia Localizada/patologia , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA