Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Rep (Amst) ; 40: e00812, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37736117

RESUMO

A vegetative insecticidal protein, Vip3A, is highly active against lepidopteran pests, which are the most important pests in most tropical countries. An important aspect of the successful commercial production of this bacterial insecticide is the development of bacterial culture media that maximize the titres of this protein and cost reduction. This study aimed to investigate and optimize Vip3A production by Bacillus thuringiensis Bt294 using statistical methods and 3-step sequential approaches. The experimental design showed that the production of Vip3A was maximized to 300 mg/L when the bacterium was cultivated in medium composed of 5.05 g/L glycerol, 49.17 g/L soytone, 30.05 g/L casein hydrolysate, 1.99 g/L CaCl2.2H2O, 7.5 mg/L CuSO4, 15 mg/L MnSO4.H2O, 9.4 g/L K2HPO4, 2.2 g/L KH2PO4, 0.2 g/L MgSO4.7H2O, 5 g/L yeast extract, 2.5 mg/L NiCl2.6H2O and 3 mL/L vitamin solution. B. thuringiensis Bt294 Vip3A toxin was highly toxic to Spodoptera exigua with LC50 values of 187.1 ng/cm2 at 7 days. This result demonstrated that a high titre of Vip3A produced by B. thuringiensis Bt294 will be useful as a biological control agent. This optimization will allow production to be scaled up for commercial production in the future.

2.
Biotechnol Biofuels ; 14(1): 68, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726825

RESUMO

BACKGROUND: A single-step ethanol production is the combination of raw cassava starch hydrolysis and fermentation. For the development of raw starch consolidated bioprocessing technologies, this research was to investigate the optimum conditions and technical procedures for the production of ethanol from raw cassava starch in a single step. It successfully resulted in high yields and productivities of all the experiments from the laboratory, the pilot, through the industrial scales. Yields of ethanol concentration are comparable with those in the commercial industries that use molasses and hydrolyzed starch as the raw materials. RESULTS: Before single-step ethanol production, studies of raw cassava starch hydrolysis by a granular starch hydrolyzing enzyme, StargenTM002, were carefully conducted. It successfully converted 80.19% (w/v) of raw cassava starch to glucose at a concentration of 176.41 g/L with a productivity at 2.45 g/L/h when it was pretreated at 60 °C for 1 h with 0.10% (v/w dry starch basis) of Distillase ASP before hydrolysis. The single-step ethanol production at 34 °C in a 5-L fermenter showed that Saccharomyces cerevisiae (Fali, active dry yeast) produced the maximum ethanol concentration, pmax at 81.86 g/L (10.37% v/v) with a yield coefficient, Yp/s of 0.43 g/g, a productivity or production rate, rp at 1.14 g/L/h and an efficiency, Ef of 75.29%. Scale-up experiments of the single-step ethanol production using this method, from the 5-L fermenter to the 200-L fermenter and further to the 3000-L industrial fermenter were successfully achieved with essentially good results. The values of pmax, Yp/s, rp, and Ef of the 200-L scale were at 80.85 g/L (10.25% v/v), 0.42 g/g, 1.12 g/L/h and 74.40%, respectively, and those of the 3000-L scale were at 70.74 g/L (8.97% v/v), 0.38 g/g, 0.98 g/L/h and 67.56%, respectively. Because of using raw starch, major by-products, i.e., glycerol, lactic acid, and acetic acid of all three scales were very low, in ranges of 0.940-1.140, 0.046-0.052, 0.000-0.059 (% w/v), respectively, where are less than those values in the industries. CONCLUSION: The single-step ethanol production using the combination of raw cassava starch hydrolysis and fermentation of three fermentation scales in this study is practicable and feasible for the scale-up of industrial production of ethanol from raw starch.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA