Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 13(9): e1006966, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28863138

RESUMO

Mammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and enhancers at the multi-TAD EDC locus in skin epithelial cells are cell type-specific and involve extensive contacts within TADs as well as between different gene-rich TADs, forming the framework for lineage-specific transcription.


Assuntos
Diferenciação Celular/genética , Cromatina/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Epiderme/metabolismo , Epigênese Genética , Genoma , Queratinócitos , Camundongos , Regiões Promotoras Genéticas , Pele/metabolismo
2.
J Invest Dermatol ; 137(10): 2157-2167, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28595999

RESUMO

The maintenance of a proper nuclear architecture and three-dimensional organization of the genes, enhancer elements, and transcription machinery plays an essential role in tissue development and regeneration. Here we show that in the developing skin, epidermal progenitor cells of mice lacking p63 transcription factor display alterations in the nuclear shape accompanied by a marked decrease in expression of several nuclear envelope-associated components (Lamin B1, Lamin A/C, Sun1, Nesprin-3, Plectin) compared with controls. Furthermore, chromatin immunoprecipitation-quantitative PCR assay showed enrichment of p63 on Sun1, Syne3, and Plec promoters, suggesting them as p63 targets. Alterations in the nuclei shape and expression of nuclear envelope-associated proteins were accompanied by altered distribution patterns of the repressive histone marks trimethylation on lysine 27 of histone H3, trimethylation on lysine 9 of histone H3, and heterochromatin protein 1-alpha in p63-null keratinocytes. These changes were also accompanied by downregulation of the transcriptional activity and relocation of the keratinocyte-specific gene loci away from the sites of active transcription toward the heterochromatin-enriched repressive nuclear compartments in p63-null cells. These data demonstrate functional links between the nuclear envelope organization, chromatin architecture, and gene expression in keratinocytes and suggest nuclear envelope-associated genes as important targets mediating p63-regulated gene expression program in the epidermis.


Assuntos
Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Queratinócitos/metabolismo , Fosfoproteínas/genética , Transativadores/genética , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Epiderme/patologia , Humanos , Queratinócitos/patologia , Camundongos , Modelos Animais , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Fosfoproteínas/biossíntese , RNA/genética , Transativadores/biossíntese , Fatores de Transcrição/genética , Transcrição Gênica
3.
J Cell Biol ; 212(1): 77-89, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26711500

RESUMO

During development, multipotent progenitor cells establish lineage-specific programmers of gene activation and silencing underlying their differentiation into specialized cell types. We show that the Polycomb component Cbx4 serves as a critical determinant that maintains the epithelial identity in the developing epidermis by repressing nonepidermal gene expression programs. Cbx4 ablation in mice results in a marked decrease of the epidermal thickness and keratinocyte (KC) proliferation associated with activation of numerous neuronal genes and genes encoding cyclin-dependent kinase inhibitors (p16/p19 and p57). Furthermore, the chromodomain- and SUMO E3 ligase-dependent Cbx4 activities differentially regulate proliferation, differentiation, and expression of nonepidermal genes in KCs. Finally, Cbx4 expression in KCs is directly regulated by p63 transcription factor, whereas Cbx4 overexpression is capable of partially rescuing the effects of p63 ablation on epidermal development. These data demonstrate that Cbx4 plays a crucial role in the p63-regulated program of epidermal differentiation, maintaining the epithelial identity and proliferative activity in KCs via repression of the selected nonepidermal lineage and cell cycle inhibitor genes.


Assuntos
Linhagem da Célula , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Epitélio/crescimento & desenvolvimento , Ligases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo Repressor Polycomb 1/deficiência , Complexo Repressor Polycomb 1/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA