Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 299(6): 104661, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997089

RESUMO

Lysine methylation is an abundant posttranslational modification, which has been most intensively studied in the context of histone proteins, where it represents an important epigenetic mark. Lysine methylation of histone proteins is primarily catalyzed by SET-domain methyltransferases (MTases). However, it has recently become evident that also another MTase family, the so-called seven-ß-strand (7BS) MTases, often denoted METTLs (methyltransferase-like), contains several lysine (K)-specific MTases (KMTs). These enzymes catalyze the attachment of up to three methyl groups to lysine residues in specific substrate proteins, using S-adenosylmethionine (AdoMet) as methyl donor. About a decade ago, only a single human 7BS KMT was known, namely the histone-specific DOT1L, but 15 additional 7BS KMTs have now been discovered and characterized. These KMTs typically target a single nonhistone substrate that, in most cases, belongs to one of the following three protein groups: components of the cellular protein synthesis machinery, mitochondrial proteins, and molecular chaperones. This article provides an extensive overview and discussion of the human 7BS KMTs and their biochemical and biological roles.


Assuntos
Lisina , Metiltransferases , Humanos , Metiltransferases/metabolismo , Metilação , Lisina/metabolismo , Conformação Proteica em Folha beta , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Metiltransferases/metabolismo
2.
J Biol Chem ; 298(4): 101791, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247388

RESUMO

Many proteins are modified by posttranslational methylation, introduced by a number of methyltransferases (MTases). Protein methylation plays important roles in modulating protein function and thus in optimizing and regulating cellular and physiological processes. Research has mainly focused on nuclear and cytosolic protein methylation, but it has been known for many years that also mitochondrial proteins are methylated. During the last decade, significant progress has been made on identifying the MTases responsible for mitochondrial protein methylation and addressing its functional significance. In particular, several novel human MTases have been uncovered that methylate lysine, arginine, histidine, and glutamine residues in various mitochondrial substrates. Several of these substrates are key components of the bioenergetics machinery, e.g., respiratory Complex I, citrate synthase, and the ATP synthase. In the present review, we report the status of the field of mitochondrial protein methylation, with a particular emphasis on recently discovered human MTases. We also discuss evolutionary aspects and functional significance of mitochondrial protein methylation and present an outlook for this emergent research field.


Assuntos
Metiltransferases , Proteínas Mitocondriais , Processamento de Proteína Pós-Traducional , Humanos , Metilação , Metiltransferases/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
3.
Nucleic Acids Res ; 49(6): 3185-3203, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33693809

RESUMO

Protein methylation occurs primarily on lysine and arginine, but also on some other residues, such as histidine. METTL18 is the last uncharacterized member of a group of human methyltransferases (MTases) that mainly exert lysine methylation, and here we set out to elucidate its function. We found METTL18 to be a nuclear protein that contains a functional nuclear localization signal and accumulates in nucleoli. Recombinant METTL18 methylated a single protein in nuclear extracts and in isolated ribosomes from METTL18 knockout (KO) cells, identified as 60S ribosomal protein L3 (RPL3). We also performed an RPL3 interactomics screen and identified METTL18 as the most significantly enriched MTase. We found that His-245 in RPL3 carries a 3-methylhistidine (3MH; τ-methylhistidine) modification, which was absent in METTL18 KO cells. In addition, both recombinant and endogenous METTL18 were found to be automethylated at His-154, thus further corroborating METTL18 as a histidine-specific MTase. Finally, METTL18 KO cells displayed altered pre-rRNA processing, decreased polysome formation and codon-specific changes in mRNA translation, indicating that METTL18-mediated methylation of RPL3 is important for optimal ribosome biogenesis and function. In conclusion, we have here established METTL18 as the second human histidine-specific protein MTase, and demonstrated its functional relevance.


Assuntos
Biossíntese de Proteínas , Proteínas Metiltransferases/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Motivos de Aminoácidos , Nucléolo Celular/enzimologia , Células HEK293 , Células HeLa , Histidina/metabolismo , Humanos , Sinais de Localização Nuclear , Proteínas Metiltransferases/química , Processamento Pós-Transcricional do RNA , Proteína Ribossômica L3 , Ribossomos/metabolismo
4.
Nucleic Acids Res ; 48(2): 830-846, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31799605

RESUMO

RNA methylations are essential both for RNA structure and function, and are introduced by a number of distinct methyltransferases (MTases). In recent years, N6-methyladenosine (m6A) modification of eukaryotic mRNA has been subject to intense studies, and it has been demonstrated that m6A is a reversible modification that regulates several aspects of mRNA function. However, m6A is also found in other RNAs, such as mammalian 18S and 28S ribosomal RNAs (rRNAs), but the responsible MTases have remained elusive. 28S rRNA carries a single m6A modification, found at position A4220 (alternatively referred to as A4190) within a stem-loop structure, and here we show that the MTase ZCCHC4 is the enzyme responsible for introducing this modification. Accordingly, we found that ZCCHC4 localises to nucleoli, the site of ribosome assembly, and that proteins involved in RNA metabolism are overrepresented in the ZCCHC4 interactome. Interestingly, the absence of m6A4220 perturbs codon-specific translation dynamics and shifts gene expression at the translational level. In summary, we establish ZCCHC4 as the enzyme responsible for m6A modification of human 28S rRNA, and demonstrate its functional significance in mRNA translation.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/genética , RNA Mensageiro/genética , RNA Ribossômico 28S/genética , Adenosina/química , Adenosina/genética , Catálise , Humanos , Metilação , Metiltransferases/química , Ligação Proteica/genética , RNA Ribossômico 28S/química
5.
J Biol Chem ; 294(31): 11654-11664, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31213526

RESUMO

Lysine methylation is a common posttranslational modification of nuclear and cytoplasmic proteins but is also present in mitochondria. The human protein denoted "family with sequence similarity 173 member B" (FAM173B) was recently uncovered as a mitochondrial lysine (K)-specific methyltransferase (KMT) targeting the c-subunit of mitochondrial ATP synthase (ATPSc), and was therefore renamed ATPSc-KMT. We here set out to investigate the biochemical function of its yet uncharacterized paralogue FAM173A. We demonstrate that FAM173A localizes to mitochondria, mediated by a noncanonical targeting sequence that is partially retained in the mature protein. Immunoblotting analysis using methyllysine-specific antibodies revealed that FAM173A knock-out (KO) abrogates lysine methylation of a single mitochondrial protein in human cells. Mass spectrometry analysis identified this protein as adenine nucleotide translocase (ANT), represented by two highly similar isoforms ANT2 and ANT3. We found that methylation occurs at Lys-52 of ANT, which was previously reported to be trimethylated. Complementation of KO cells with WT or enzyme-dead FAM173A indicated that the enzymatic activity of FAM173A is required for ANT methylation at Lys-52 to occur. Both in human cells and in rat organs, Lys-52 was exclusively trimethylated, indicating that this modification is constitutive, rather than regulatory and dynamic. Moreover, FAM173A-deficient cells displayed increased mitochondrial respiration compared with FAM173A-proficient cells. In summary, we demonstrate that FAM173A is the long-sought KMT responsible for ANT methylation at Lys-52, and point out the functional significance of Lys-52 methylation in ANT. Based on the established naming nomenclature for KMTs, we propose to rename FAM173A to ANT-KMT (gene name ANTKMT).


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Metiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Humanos , Fígado/metabolismo , Lisina/metabolismo , Espectrometria de Massas , Metilação , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Peptídeos/análise , Proteínas Metiltransferases/genética , Ratos , Alinhamento de Sequência
6.
J Biol Chem ; 294(4): 1128-1141, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30530489

RESUMO

Lysine methylation is an important post-translational modification that is also present on mitochondrial proteins, but the mitochondrial lysine-specific methyltransferases (KMTs) responsible for modification are in most cases unknown. Here, we set out to determine the function of human family with sequence similarity 173 member B (FAM173B), a mitochondrial methyltransferase (MTase) reported to promote chronic pain. Using bioinformatics analyses and biochemical assays, we found that FAM173B contains an atypical, noncleavable mitochondrial targeting sequence responsible for its localization to mitochondria. Interestingly, CRISPR/Cas9-mediated KO of FAM173B in mammalian cells abrogated trimethylation of Lys-43 in ATP synthase c-subunit (ATPSc), a modification previously reported as ubiquitous among metazoans. ATPSc methylation was restored by complementing the KO cells with enzymatically active human FAM173B or with a putative FAM173B orthologue from the nematode Caenorhabditis elegans Interestingly, lack of Lys-43 methylation caused aberrant incorporation of ATPSc into the ATP synthase complex and resulted in decreased ATP-generating ability of the complex, as well as decreased mitochondrial respiration. In summary, we have identified FAM173B as the long-sought KMT responsible for methylation of ATPSc, a key protein in cellular ATP production, and have demonstrated functional significance of ATPSc methylation. We suggest renaming FAM173B to ATPSc-KMT (gene name ATPSCKMT).


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Animais , Linhagem Celular , Biologia Computacional , Células HeLa , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Metilação , Camundongos , Mitocôndrias/metabolismo
7.
PLoS One ; 18(6): e0287558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37347777

RESUMO

The methyltransferase-like protein 13 (METTL13) methylates the eukaryotic elongation factor 1 alpha (eEF1A) on two locations: the N-terminal amino group and lysine 55. The absence of this methylation leads to reduced protein synthesis and cell proliferation in human cancer cells. Previous studies showed that METTL13 is dispensable in non-transformed cells, making it potentially interesting for cancer therapy. However, METTL13 has not been examined yet in whole animals. Here, we used the nematode Caenorhabditis elegans as a simple model to assess the functions of METTL13. Using methyltransferase assays and mass spectrometry, we show that the C. elegans METTL13 (METL-13) methylates eEF1A (EEF-1A) in the same way as the human protein. Crucially, the cancer-promoting role of METL-13 is also conserved and depends on the methylation of EEF-1A, like in human cells. At the same time, METL-13 appears dispensable for animal growth, development, and stress responses. This makes C. elegans a convenient whole-animal model for studying METL13-dependent carcinogenesis without the complications of interfering with essential wild-type functions.


Assuntos
Neoplasias , Proteínas Metiltransferases , Animais , Humanos , Caenorhabditis elegans/genética , Metiltransferases/genética , Carcinogênese , Fator 1 de Elongação de Peptídeos/genética
8.
Cell Rep Med ; 4(11): 101265, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37944527

RESUMO

Pain often persists in patients with an inflammatory disease, even when inflammation has subsided. The molecular mechanisms leading to this failure in pain resolution and the transition to chronic pain are poorly understood. Mitochondrial dysfunction in sensory neurons links to chronic pain, but its role in resolution of inflammatory pain is unclear. Transient inflammation causes neuronal plasticity, called hyperalgesic priming, which impairs resolution of pain induced by a subsequent inflammatory stimulus. We identify that hyperalgesic priming in mice increases the expression of a mitochondrial protein (ATPSc-KMT) and causes mitochondrial and metabolic disturbances in sensory neurons. Inhibition of mitochondrial respiration, knockdown of ATPSCKMT expression, or supplementation of the affected metabolite is sufficient to restore resolution of inflammatory pain and prevents chronic pain development. Thus, inflammation-induced mitochondrial-dependent disturbances in sensory neurons predispose to a failure in resolution of inflammatory pain and development of chronic pain.


Assuntos
Dor Crônica , Humanos , Camundongos , Animais , Dor Crônica/induzido quimicamente , Dor Crônica/metabolismo , Células Receptoras Sensoriais/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Inflamação/metabolismo , Mitocôndrias/metabolismo
9.
Nat Commun ; 13(1): 4883, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986016

RESUMO

How animals rewire cellular programs to survive cold is a fascinating problem with potential biomedical implications, ranging from emergency medicine to space travel. Studying a hibernation-like response in the free-living nematode Caenorhabditis elegans, we uncovered a regulatory axis that enhances the natural resistance of nematodes to severe cold. This axis involves conserved transcription factors, DAF-16/FoxO and PQM-1, which jointly promote cold survival by upregulating FTN-1, a protein related to mammalian ferritin heavy chain (FTH1). Moreover, we show that inducing expression of FTH1 also promotes cold survival of mammalian neurons, a cell type particularly sensitive to deterioration in hypothermia. Our findings in both animals and cells suggest that FTN-1/FTH1 facilitates cold survival by detoxifying ROS-generating iron species. We finally show that mimicking the effects of FTN-1/FTH1 with drugs protects neurons from cold-induced degeneration, opening a potential avenue to improved treatments of hypothermia.


Assuntos
Proteínas de Caenorhabditis elegans , Hipotermia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Ferro/metabolismo , Mamíferos/metabolismo , Camundongos , Neurônios/metabolismo
10.
Nat Commun ; 9(1): 3411, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143613

RESUMO

Eukaryotic elongation factor 1 alpha (eEF1A) delivers aminoacyl-tRNA to the ribosome and thereby plays a key role in protein synthesis. Human eEF1A is subject to extensive post-translational methylation, but several of the responsible enzymes remain unknown. Using a wide range of experimental approaches, we here show that human methyltransferase (MTase)-like protein 13 (METTL13) contains two distinct MTase domains targeting the N terminus and Lys55 of eEF1A, respectively. Our biochemical and structural analyses provide detailed mechanistic insights into recognition of the eEF1A N terminus by METTL13. Moreover, through ribosome profiling, we demonstrate that loss of METTL13 function alters translation dynamics and results in changed translation rates of specific codons. In summary, we here unravel the function of a human MTase, showing that it methylates eEF1A and modulates mRNA translation in a codon-specific manner.


Assuntos
Códon/genética , Metiltransferases/metabolismo , Fator 1 de Elongação de Peptídeos/metabolismo , Humanos , Metiltransferases/química , Metiltransferases/genética , Fator 1 de Elongação de Peptídeos/química , Fator 1 de Elongação de Peptídeos/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
11.
Biochemistry ; 41(21): 6660-7, 2002 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-12022869

RESUMO

Cyclic AMP receptor protein (CRP) regulates the expression of a large number of genes in E. coli. It is activated by cAMP binding, which leads to some yet undefined conformational changes. These changes do not involve significant redistribution of secondary structures. A potential mechanism of activation is a ligand-induced change in structural dynamics. Hence, the cAMP-mediated conformational and structural dynamics changes in the wild-type CRP were investigated using hydrogen-deuterium exchange and Fourier transform infrared spectroscopy. Upon cAMP binding, the two functional domains within the wild-type CRP undergo conformational and structural dynamics changes in two opposite directions. While the smaller DNA-binding domain becomes more flexible, the larger cAMP-binding domain shifts to a less dynamic conformation, evidenced by a faster and a slower amide H-D exchange, respectively. To a lesser extent, binding of cGMP, a nonfunctional analogue of cAMP, also stabilizes the cAMP-binding domain, but it fails to mimic the relaxation effect of cAMP on the DNA-binding domain. Despite changes in the conformation and structural dynamics, cAMP binding does not alter significantly the secondary structural composition of the wild-type CRP. The apparent difference between functional and nonfunctional analogues of cAMP is the ability of cAMP to effect an increase in the dynamic motions of the DNA binding domain.


Assuntos
Proteína Receptora de AMP Cíclico/química , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Escherichia coli/química , Sítios de Ligação/fisiologia , Proteína Receptora de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Deutério/química , Hidrogênio/química , Ligantes , Conformação Proteica , Estrutura Terciária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA