Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 21(1): 194, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154576

RESUMO

BACKGROUND: Cardiovascular disease is the leading cause of death in many countries. Physicians often diagnose cardiovascular disease based on current clinical tests and previous experience of diagnosing patients with similar symptoms. Patients who suffer from heart disease require quick diagnosis, early treatment and constant observations. To address their needs, many data mining approaches have been used in the past in diagnosing and predicting heart diseases. Previous research was also focused on identifying the significant contributing features to heart disease prediction, however, less importance was given to identifying the strength of these features. METHOD: This paper is motivated by the gap in the literature, thus proposes an algorithm that measures the strength of the significant features that contribute to heart disease prediction. The study is aimed at predicting heart disease based on the scores of significant features using Weighted Associative Rule Mining. RESULTS: A set of important feature scores and rules were identified in diagnosing heart disease and cardiologists were consulted to confirm the validity of these rules. The experiments performed on the UCI open dataset, widely used for heart disease research yielded the highest confidence score of 98% in predicting heart disease. CONCLUSION: This study managed to provide a significant contribution in computing the strength scores with significant predictors in heart disease prediction. From the evaluation results, we obtained important rules and achieved highest confidence score by utilizing the computed strength scores of significant predictors on Weighted Associative Rule Mining in predicting heart disease.


Assuntos
Algoritmos , Cardiopatias , Mineração de Dados , Cardiopatias/diagnóstico , Humanos
2.
Sensors (Basel) ; 18(9)2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30149631

RESUMO

Energy consumption in the residential sector is 25% of all the sectors. The advent of smart appliances and intelligent sensors have increased the realization of home energy management systems. Acquiring balance between energy consumption and user comfort is in the spotlight when the performance of the smart home is evaluated. Appliances of heating, ventilation and air conditioning constitute up to 64% of energy consumption in residential buildings. A number of research works have shown that fuzzy logic system integrated with other techniques is used with the main objective of energy consumption minimization. However, user comfort is often sacrificed in these techniques. In this paper, we have proposed a Fuzzy Inference System (FIS) that uses humidity as an additional input parameter in order to maintain the thermostat set-points according to user comfort. Additionally, we have used indoor room temperature variation as a feedback to proposed FIS in order to get the better energy consumption. As the number of rules increase, the task of defining them in FIS becomes time consuming and eventually increases the chance of manual errors. We have also proposed the automatic rule base generation using the combinatorial method. The proposed techniques are evaluated using Mamdani FIS and Sugeno FIS. The proposed method provides a flexible and energy efficient decision-making system that maintains the user thermal comfort with the help of intelligent sensors. The proposed FIS system requires less memory and low processing power along with the use of sensors, making it possible to be used in the IoT operating system e.g., RIOT. Simulation results validate that the proposed technique reduces energy consumption by 28%.

3.
Materials (Basel) ; 17(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39274754

RESUMO

In directed energy deposition (DED), accurately controlling and predicting melt pool characteristics is essential for ensuring desired material qualities and geometric accuracies. This paper introduces a robust surrogate model based on recurrent neural network (RNN) architectures-Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Gated Recurrent Unit (GRU). Leveraging a time series dataset from multi-physics simulations and a three-factor, three-level experimental design, the model accurately predicts melt pool peak temperatures, lengths, widths, and depths under varying conditions. RNN algorithms, particularly Bi-LSTM, demonstrate high predictive accuracy, with an R-square of 0.983 for melt pool peak temperatures. For melt pool geometry, the GRU-based model excels, achieving R-square values above 0.88 and reducing computation time by at least 29%, showcasing its accuracy and efficiency. The RNN-based surrogate model built in this research enhances understanding of melt pool dynamics and supports precise DED system setups.

4.
Biomed Res Int ; 2019: 7074387, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31111064

RESUMO

Storing and processing of large DNA sequences has always been a major problem due to increasing volume of DNA sequence data. However, a number of solutions have been proposed but they require significant computation and memory. Therefore, an efficient storage and pattern matching solution is required for DNA sequencing data. Bloom filters (BFs) represent an efficient data structure, which is mostly used in the domain of bioinformatics for classification of DNA sequences. In this paper, we explore more dimensions where BFs can be used other than classification. A proposed solution is based on Multiple Bloom Filters (MBFs) that finds all the locations and number of repetitions of the specified pattern inside a DNA sequence. Both of these factors are extremely important in determining the type and intensity of any disease. This paper serves as a first effort towards optimizing the search for location and frequency of substrings in DNA sequences using MBFs. We expect that further optimizations in the proposed solution can bring remarkable results as this paper presents a proof of concept implementation for a given set of data using proposed MBFs technique. Performance evaluation shows improved accuracy and time efficiency of the proposed approach.


Assuntos
Biologia Computacional/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Confiabilidade dos Dados , Humanos , Probabilidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA