Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 22(9): 1335-1344, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28115743

RESUMO

Activity-dependent neuroprotective protein (ADNP), vital for brain formation and cognitive function, is mutated in autism and linked to neurodegenerative/psychiatric diseases. An eight-amino-acid peptide snippet of ADNP, NAP (NAPVSIPQ), identified as a smallest active fragment, includes the SxIP microtubule (MT) end-binding protein (EB) association motif, and enhances ADNP-EB3 interaction. Depletion of EB1 or EB3 abolishes NAP protection against zinc intoxication. Furthermore, NAP enhances Tau-MT interaction, and Tau regulates the localization and function of EB1 and EB3 in developing neuronal cells. Here, we asked how NAP (ADNP) enhances Tau-MT interactions and whether this is mediated by EBs. We showed, for we believe the first time, that NAP augmented endogenous EB1 comet density in the N1E-115 neuroblastoma neuronal model. This finding was substantiated by cell transfection with fluorescent EB1 and live cell imaging. NAP increased comet amounts, length and speed. At the molecular level, NAP enhanced EB3 homodimer formation, while decreasing EB1-EB3 heterodimer content and driving EB1- and EB3-Tau interactions (dramatic 20-fold increases), leading to recruitment of EB1/EB3 and Tau to MTs under zinc intoxication. Our previous results showed that while NAP protected neuronal-like cells against oxidative stress, it did not protect NIH3T3 fibroblasts. Here, NAP did not protect NIH3T3 cells against zinc intoxication, unless these cells were transfected with Tau. Interestingly, other MT associated proteins (MAPs) may replace Tau, thus, EB-Tau (MAPs) interaction is identified as a novel target for endogenous ADNP neuroprotection, and a future target for drug development, with NAP as a prototype.


Assuntos
Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas tau/metabolismo , Animais , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Células NIH 3T3 , Neurônios/metabolismo , Oligopeptídeos , Peptídeos , Ligação Proteica/fisiologia , Tauopatias/terapia
2.
Mol Psychiatry ; 21(10): 1467-76, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26782054

RESUMO

Activity-dependent neuroprotective protein (ADNP), essential for brain formation, is a frequent autism spectrum disorder (ASD)-mutated gene. ADNP associates with microtubule end-binding proteins (EBs) through its SxIP motif, to regulate dendritic spine formation and brain plasticity. Here, we reveal SKIP, a novel four-amino-acid peptide representing an EB-binding site, as a replacement therapy in an outbred Adnp-deficient mouse model. We discovered, for the first time, axonal transport deficits in Adnp(+/-) mice (measured by manganese-enhanced magnetic resonance imaging), with significant male-female differences. RNA sequencing evaluations showed major age, sex and genotype differences. Function enrichment and focus on major gene expression changes further implicated channel/transporter function and the cytoskeleton. In particular, a significant maturation change (1 month-five months) was observed in beta1 tubulin (Tubb1) mRNA, only in Adnp(+/+) males, and sex-dependent increase in calcium channel mRNA (Cacna1e) in Adnp(+/+) males compared with females. At the protein level, the Adnp(+/-) mice exhibited impaired hippocampal expression of the calcium channel (voltage-dependent calcium channel, Cacnb1) as well as other key ASD-linked genes including the serotonin transporter (Slc6a4), and the autophagy regulator, BECN1 (Beclin1), in a sex-dependent manner. Intranasal SKIP treatment normalized social memory in 8- to 9-month-old Adnp(+/-)-treated mice to placebo-control levels, while protecting axonal transport and ameliorating changes in ASD-like gene expression. The control, all d-amino analog D-SKIP, did not mimic SKIP activity. SKIP presents a novel prototype for potential ASD drug development, a prevalent unmet medical need.


Assuntos
Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Microtúbulos/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Motivos de Aminoácidos , Animais , Transtorno do Espectro Autista/etiologia , Transtorno do Espectro Autista/genética , Transporte Axonal/genética , Transporte Axonal/fisiologia , Encéfalo/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio Tipo R/genética , Canais de Cálcio Tipo R/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Espinhas Dendríticas/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Memória , Camundongos , Microtúbulos/metabolismo , RNA Mensageiro/metabolismo , Fatores Sexuais , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/metabolismo
3.
Mol Psychiatry ; 20(1): 126-32, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24365867

RESUMO

Autophagy is a process preserving the balance between synthesis, degradation and recycling of cellular components and is therefore essential for neuronal survival and function. Several key proteins govern the autophagy pathway including beclin1 and microtubule associated protein 1 light chain 3 (LC3). Here, we show a brain-specific reduction in beclin1 expression in postmortem hippocampus of schizophrenia patients, not detected in peripheral lymphocytes. This is in contrast with activity-dependent neuroprotective protein (ADNP) and ADNP2, which we have previously found to be deregulated in postmortem hippocampal samples from schizophrenia patients, but that now showed a significantly increased expression in lymphocytes from related patients, similar to increases in the anti-apoptotic, beclin1-interacting, Bcl2. The increase in ADNP was associated with the initial stages of the disease, possibly reflecting a compensatory effect. The increase in ADNP2 might be a consequence of neuroleptic treatment, as seen in rats subjected to clozapine treatment. ADNP haploinsufficiency in mice, which results in age-related neuronal death, cognitive and social dysfunction, exhibited reduced hippocampal beclin1 and increased Bcl2 expression (mimicking schizophrenia and normal human aging). At the protein level, ADNP co-immunoprecipitated with LC3B suggesting a direct association with the autophagy process and paving the path to novel targets for drug design.


Assuntos
Autofagia/ética , Hipocampo/metabolismo , Hipocampo/patologia , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antipsicóticos/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/genética , Autofagia/fisiologia , Proteína Beclina-1 , Estudos de Casos e Controles , Linhagem Celular Transformada , Clozapina/farmacologia , Feminino , Proteínas de Homeodomínio/genética , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neuroblastoma/patologia , Ratos , Ratos Sprague-Dawley , Adulto Jovem , Proteína de Morte Celular Associada a bcl/genética , Proteína de Morte Celular Associada a bcl/metabolismo
4.
Mol Psychiatry ; 19(10): 1115-24, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25178163

RESUMO

The NAP motif of activity-dependent neuroprotective protein (ADNP) enhanced memory scores in patients suffering from mild cognitive impairment and protected activities of daily living in schizophrenia patients, while fortifying microtubule (MT)-dependent axonal transport, in mice and flies. The question is how does NAP fortify MTs? Our sequence analysis identified the MT end-binding protein (EB1)-interacting motif SxIP (SIP, Ser-Ile-Pro) in ADNP/NAP and showed specific SxIP binding sites in all members of the EB protein family (EB1-3). Others found that EB1 enhancement of neurite outgrowth is attenuated by EB2, while EB3 interacts with postsynaptic density protein 95 (PSD-95) to modulate dendritic plasticity. Here, NAP increased PSD-95 expression in dendritic spines, which was inhibited by EB3 silencing. EB1 or EB3, but not EB2 silencing inhibited NAP-mediated cell protection, which reflected NAP binding specificity. NAPVSKIPQ (SxIP=SKIP), but not NAPVAAAAQ mimicked NAP activity. ADNP, essential for neuronal differentiation and brain formation in mouse, a member of the SWI/SNF chromatin remodeling complex and a major protein mutated in autism and deregulated in schizophrenia in men, showed similar EB interactions, which were enhanced by NAP treatment. The newly identified shared MT target of NAP/ADNP is directly implicated in synaptic plasticity, explaining the breadth and efficiency of neuroprotective/neurotrophic capacities.


Assuntos
Espinhas Dendríticas/fisiologia , Proteínas de Homeodomínio/metabolismo , Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteína 4 Homóloga a Disks-Large , Escherichia coli , Guanilato Quinases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Células PC12 , Domínios e Motivos de Interação entre Proteínas , Ratos , Proteínas Recombinantes/metabolismo , Tubulina (Proteína)/metabolismo
5.
Transl Psychiatry ; 5: e501, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25646590

RESUMO

Activity-dependent neuroprotective protein (ADNP) is a most frequent autism spectrum disorder (ASD)-associated gene and the only protein significantly decreasing in the serum of Alzheimer's disease (AD) patients. Is ADNP associated with ASD being more prevalent in boys and AD more prevalent in women? Our results revealed sex-related learning/memory differences in mice, reflecting hippocampal expression changes in ADNP and ADNP-controlled AD/ASD risk genes. Hippocampal ADNP transcript content was doubled in male vs female mice, with females showing equal expression to ADNP haploinsufficient (ADNP(+/)(-)) males and no significant genotype-associated reduction. Increased male ADNP expression was replicated in human postmortem hippocampal samples. The hippocampal transcript for apolipoprotein E (the major risk gene for AD) was doubled in female mice compared with males, and further doubled in the ADNP(+/-) females, contrasting a decrease in ADNP(+/-) males. Previously, overexpression of the eukaryotic translation initiation factor 4E (eIF4E) led to ASD-like phenotype in mice. Here, we identified binding sites on ADNP for eIF4E and co-immunoprecipitation. Furthermore, hippocampal eIF4E expression was specifically increased in young ADNP(+/-) male mice. Behaviorally, ADNP(+/-) male mice exhibited deficiencies in object recognition and social memory compared with ADNP(+/+) mice, while ADNP(+/-) females were partially spared. Contrasting males, which preferred novel over familiar mice, ADNP(+/+) females showed no preference to novel mice and ADNP(+/-) females did not prefer mice over object. ADNP expression, positioned as a master regulator of key ASD and AD risk genes, introduces a novel concept of hippocampal gene-regulated sexual dimorphism and an ADNP(+/-) animal model for translational psychiatry.


Assuntos
Doença de Alzheimer/genética , Transtorno Autístico/genética , Comportamento Animal , Hipocampo/metabolismo , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Perfilação da Expressão Gênica , Heterozigoto , Humanos , Masculino , Memória , Camundongos , Reconhecimento Psicológico , Fatores Sexuais , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA