Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Curr Opin Neurol ; 35(6): 794-802, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226710

RESUMO

PURPOSE OF REVIEW: Adult-type diffuse gliomas are highly heterogeneous tumors. Bulk transcriptome analyses suggested that the composition of the tumor microenvironment (TME) corresponds to genetic and clinical features. In this review, we highlight novel findings on the intratumoral heterogeneity of IDH-wildtype and IDH-mutant gliomas characterized at single-cell resolution, and emphasize the mechanisms shaping the immune TME and therapeutic implications. RECENT FINDINGS: Emergent evidence indicates that in addition to genetic drivers, epigenetic mechanisms and microenvironmental factors influence the glioma subtypes. Interactions between glioma and immune cells contribute to immune evasion, particularly in aggressive tumors. Spatial and temporal heterogeneity of malignant and immune cell subpopulations is high in recurrent gliomas. IDH-wildtype and IDH-mutant tumors display distinctive changes in their myeloid and lymphoid compartments, and D-2HG produced by IDH-mutant cells impacts the immune TME. SUMMARY: The comprehensive dissection of the intratumoral ecosystem of human gliomas using single-cell and spatial transcriptomic approaches advances our understanding of the mechanisms underlying the immunosuppressed state of the TME, supports the prognostic value of tumor-associated macrophages and microglial cells, and sheds light on novel therapeutic options.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Isocitrato Desidrogenase/genética , Microambiente Tumoral/genética , Ecossistema , Mutação , Recidiva Local de Neoplasia , Glioma/genética , Glioma/patologia
2.
Brain ; 138(Pt 1): 53-68, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25384799

RESUMO

Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic disease. Therefore, we show that system [Formula: see text] participates in microglial reactivity and modulates amyotrophic lateral sclerosis motor neuron degeneration, revealing system [Formula: see text] inactivation, as a potential approach to slow amyotrophic lateral sclerosis disease progression after onset of clinical symptoms.


Assuntos
Sistema ASC de Transporte de Aminoácidos/deficiência , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Microglia/metabolismo , Esclerose Lateral Amiotrófica/mortalidade , Animais , Animais Recém-Nascidos , Córtex Cerebral/citologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Mutação/genética , Óxido Nítrico/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase-1
3.
Dev Neurosci ; 37(3): 232-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25896276

RESUMO

We have generated a Xenopus laevis transgenic line, MBP-GFP-NTR, allowing conditional ablation of myelin-forming oligodendrocytes. In this transgenic line the transgene is driven by the proximal portion of the myelin basic protein regulatory sequence, specific to mature oligodendrocytes. The transgene protein is formed by the green fluorescent protein reporter fused to the Escherichia coli nitroreductase (NTR) selection enzyme. The NTR enzyme converts the innocuous prodrug metronidazole (MTZ) to a cytotoxin. Ablation of oligodendrocytes by MTZ treatment of the tadpole induced demyelination, and here we show that myelin debris are subsequently eliminated by microglial cells. After cessation of MTZ treatment, remyelination proceeded spontaneously. We questioned the origin of remyelinating cells. Our data suggest that Sox10+ oligodendrocyte precursor cells (OPCs), which are already present in the optic nerve prior to the experimentally induced demyelination, are responsible for remyelination, and this required only minimal (if any) cell division of OPCs. © 2015 S. Karger AG, Basel.


Assuntos
Doenças Desmielinizantes/metabolismo , Microglia/metabolismo , Bainha de Mielina/metabolismo , Regeneração Nervosa/fisiologia , Oligodendroglia/metabolismo , Animais , Animais Geneticamente Modificados , Anti-Infecciosos/farmacologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Metronidazol/farmacologia , Células-Tronco Neurais , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Xenopus laevis
4.
Glia ; 61(9): 1542-55, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836548

RESUMO

The phagocyte NADPH oxidase Nox2 generates superoxide ions implicated in the elimination of microorganisms and the redox control of inflammatory signaling. However, the role of Nox2 in phagocyte functions unrelated to immunity or pathologies is unknown. During development, oriented cell migrations insure the timely recruitment and function of phagocytes in developing tissues. Here, we have addressed the role of Nox2 in the directional migration of microglial cells during development. We show that microglial Nox2 regulates the chemotaxis of purified microglia mediated by the colony stimulating factor-1 receptor (CSF-1R) and the vascular endothelial growth factor receptor-1 (VEGFR1). Stimulation of these receptors triggers activation of Nox2 at the leading edge of polarized cells. In the early postnatal stages of mouse brain development, Nox2 is activated in macrophages / microglial cells in the lateral ventricle or the adjacent subventricular zone (SVZ). Fluorescent microglia injected into the lateral ventricle infiltrate the dorso-caudal SVZ through a mechanism that is blocked by pretreatment of the injected cells with an irreversible Nox inhibitor. Infiltration of endogenous microglia into the caudal SVZ of the cerebral cortex is prevented by (1) Nox2 gene deficiency, (2) treatment with a Nox2 inhibitor (apocynin), and (3) invalidation of the VEGFR1 kinase. We conclude that phagocytes move out of the lateral ventricle soon after birth and infiltrate the cortical SVZ through a mechanism requiring microglial Nox2 and VEGFR1 activation. Nox2 therefore modulates the migration of microglia and their development.


Assuntos
Quimiotaxia/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Ventrículos Laterais/citologia , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , NADPH Oxidases/metabolismo , Fagócitos/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Acetofenonas/farmacologia , Actinas/genética , Animais , Animais Recém-Nascidos , Antígenos de Diferenciação/metabolismo , Bromodesoxiuridina , Antígeno CD11b/metabolismo , Movimento Celular/genética , Células Cultivadas , Córtex Cerebral/anatomia & histologia , Quimiotaxia/genética , Galinhas , Inibidores Enzimáticos/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Proteínas de Fluorescência Verde/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADPH Oxidase 2 , NADPH Oxidases/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
5.
Sci Rep ; 12(1): 4063, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35260711

RESUMO

Increased needs for mobile phone communications have raised successive generations (G) of wireless technologies, which could differentially affect biological systems. To test this, we exposed rats to single head-only exposure of a 4G long-term evolution (LTE)-1800 MHz electromagnetic field (EMF) for 2 h. We then assessed the impact on microglial space coverage and electrophysiological neuronal activity in the primary auditory cortex (ACx), under acute neuroinflammation induced by lipopolysaccharide. The mean specific absorption rate in the ACx was 0.5 W/kg. Multiunit recording revealed that LTE-EMF triggered reduction in the response strength to pure tones and to natural vocalizations, together with an increase in acoustic threshold in the low and medium frequencies. Iba1 immunohistochemistry showed no change in the area covered by microglia cell bodies and processes. In healthy rats, the same LTE-exposure induced no change in response strength and acoustic threshold. Our data indicate that acute neuroinflammation sensitizes neuronal responses to LTE-EMF, which leads to an altered processing of acoustic stimuli in the ACx.


Assuntos
Córtex Auditivo , Telefone Celular , Acústica , Animais , Campos Eletromagnéticos , Neurônios , Ratos
6.
Neurotox Res ; 38(1): 105-123, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32200527

RESUMO

Mobile communications are propagated by electromagnetic fields (EMFs), and since the 1990s, they operate with pulse-modulated signals such as the GSM-1800 MHz. The biological effects of GSM-EMF in humans affected by neuropathological processes remain seldom investigated. In this study, a 2-h head-only exposure to GSM-1800 MHz was applied to (i) rats undergoing an acute neuroinflammation triggered by a lipopolysaccharide (LPS) treatment, (ii) age-matched healthy rats, or (iii) transgenic hSOD1G93A rats that modeled a presymptomatic phase of human amyotrophic lateral sclerosis (ALS). Gene responses were assessed 24 h after the GSM head-only exposure in a motor area of the cerebral cortex (mCx) where the mean specific absorption rate (SAR) was estimated to be 3.22 W/kg. In LPS-treated rats, a genome-wide mRNA profiling was performed by RNA-seq analysis and revealed significant (adjusted p value < 0.05) but moderate (fold changes < 2) upregulations or downregulations affecting 2.7% of the expressed genes, including genes expressed predominantly in neuronal or in glial cell types and groups of genes involved in protein ubiquitination or dephosphorylation. Reverse transcription-quantitative PCR analyses confirmed gene modulations uncovered by RNA-seq data and showed that in a set of 15 PCR-assessed genes, significant gene responses to GSM-1800 MHz depended upon the acute neuroinflammatory state triggered in LPS-treated rats, because they were not observed in healthy or in hSOD1G93A rats. Together, our data specify the extent of cortical gene modulations triggered by GSM-EMF in the course of an acute neuroinflammation and indicate that GSM-induced gene responses can differ according to pathologies affecting the CNS.


Assuntos
Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos da radiação , Campos Eletromagnéticos , Encefalite/metabolismo , Transcriptoma/efeitos da radiação , Animais , Encefalite/induzido quimicamente , Feminino , Expressão Gênica/efeitos da radiação , Lipopolissacarídeos/administração & dosagem , Masculino , Radiometria , Ratos Sprague-Dawley , Análise de Sequência de RNA
7.
Nat Neurosci ; 23(11): 1339-1351, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33077946

RESUMO

Microglia and peripheral macrophages have both been implicated in amyotrophic lateral sclerosis (ALS), although their respective roles have yet to be determined. We now show that macrophages along peripheral motor neuron axons in mouse models and patients with ALS react to neurodegeneration. In ALS mice, peripheral myeloid cell infiltration into the spinal cord was limited and depended on disease duration. Targeted gene modulation of the reactive oxygen species pathway in peripheral myeloid cells of ALS mice, using cell replacement, reduced both peripheral macrophage and microglial activation, delayed symptoms and increased survival. Transcriptomics revealed that sciatic nerve macrophages and microglia reacted differently to neurodegeneration, with abrupt temporal changes in macrophages and progressive, unidirectional activation in microglia. Modifying peripheral macrophages suppressed proinflammatory microglial responses, with a shift toward neuronal support. Thus, modifying macrophages at the periphery has the capacity to influence disease progression and may be of therapeutic value for ALS.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Axônios/imunologia , Macrófagos/imunologia , Microglia/imunologia , Neurônios Motores/imunologia , Nervo Isquiático/imunologia , Adulto , Idoso , Esclerose Lateral Amiotrófica/metabolismo , Animais , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Pessoa de Meia-Idade , Neurônios Motores/metabolismo , Nervo Isquiático/metabolismo , Medula Espinal/imunologia , Medula Espinal/metabolismo
8.
J Neurosci ; 28(46): 12039-51, 2008 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19005069

RESUMO

Reactive oxygen species (ROS) modulate intracellular signaling but are also responsible for neuronal damage in pathological states. Microglia, the resident CNS macrophages, are prominent sources of ROS through expression of the phagocyte oxidase which catalytic subunit Nox2 generates superoxide ion (O2(.-)). Here we show that microglia also express Nox1 and other components of nonphagocyte NADPH oxidases, including p22(phox), NOXO1, NOXA1, and Rac1/2. The subcellular distribution and functions of Nox1 were determined by blocking Nox activity with diphenylene iodonium or apocynin, and by silencing the Nox1 gene in microglia purified from wild-type (WT) or Nox2-KO mice. [Nox1-p22(phox)] dimers localized in intracellular compartments are recruited to phagosome membranes during microglial phagocytosis of zymosan, and Nox1 produces O2(.-) in zymosan-loaded phagosomes. In microglia activated with lipopolysaccharide (LPS), Nox1 produces O2(.-), which enhances cell expression of inducible nitric oxide synthase and secretion of interleukin-1beta. Comparisons of microglia purified from WT, Nox2-KO, or Nox1-KO mice indicate that both Nox1 and Nox2 are required to optimize microglial production of nitric oxide. By injecting LPS in the striatum of WT and Nox1-KO mice, we show that Nox1 also enhances microglial production of cytotoxic nitrite species and promotes loss of presynaptic proteins in striatal neurons. These results demonstrate the functional expression of Nox1 in resident CNS phagocytes, which can promote production of neurotoxic compounds during neuroinflammation. Our study also shows that Nox1- and Nox2-dependent oxidases play distinct roles in microglial activation and that Nox1 is a possible target for the treatment of neuroinflammatory states.


Assuntos
Encefalite/enzimologia , Gliose/enzimologia , Microglia/enzimologia , NADH NADPH Oxirredutases/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/enzimologia , Corpo Estriado/fisiopatologia , Grupo dos Citocromos b/genética , Grupo dos Citocromos b/metabolismo , Encefalite/fisiopatologia , Feminino , Gliose/fisiopatologia , Mediadores da Inflamação/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Neurotoxinas/farmacologia , Nitritos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas/genética , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Zimosan/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
9.
Mol Neurobiol ; 56(2): 963-975, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29850989

RESUMO

Down syndrome is characterized by premature aging and dementia with neurological features that mimic those found in Alzheimer's disease. This pathology in Down syndrome could be related to inflammation, which plays a role in other neurodegenerative diseases. We previously found a link between the NFkB pathway, long considered a prototypical proinflammatory signaling pathway, and the dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). DYRK1A is associated with early onset of Alzheimer's disease in Down syndrome patients. Here, we sought to determine the role of DYRK1A on regulation of the NFkB pathway in the mouse brain. We found that over-expression of Dyrk1A (on a C57BL/6J background) stabilizes IκBα protein levels by inhibition of calpain activity and increases cytoplasmic p65 sequestration in the mouse brain. In contrast, Dyrk1A-deficient mice (on a CD1 background) have decreased IκBα protein levels with an increased calpain activity and decreased cytoplasmic p65 sequestration in the brain. Taken together, our results demonstrate a role of DYRK1A in regulation of the NFkB pathway. However, decreased IκBα and DYRK1A protein levels associated with an increased calpain activity were found in the brains of mice over-expressing Dyrk1A after lipopolysaccharide treatment. Although inflammation induced by lipopolysaccharide treatment has a positive effect on calpastatin and a negative effect on DYRK1A protein level, a positive effect on microglial activation is maintained in the brains of mice over-expressing Dyrk1A.


Assuntos
Encéfalo/efeitos dos fármacos , Inflamação/induzido quimicamente , Lipopolissacarídeos/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Calpaína/metabolismo , Síndrome de Down/metabolismo , Inflamação/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas tau/metabolismo , Quinases Dyrk
10.
Neuron ; 41(4): 535-47, 2004 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-14980203

RESUMO

The loss of neuronal cells, a prominent event in the development of the nervous system, involves regulated triggering of programmed cell death, followed by efficient removal of cell corpses. Professional phagocytes, such as microglia, contribute to the elimination of dead cells. Here we provide evidence that, in addition to their phagocytic activity, microglia promote the death of developing neurons engaged in synaptogenesis. In the developing mouse cerebellum, Purkinje cells die, and 60% of these neurons that already expressed activated caspase-3 were engulfed or contacted by spreading processes emitted by microglial cells. Apoptosis of Purkinje cells in cerebellar slices was strongly reduced by selective elimination of microglia. Superoxide ions produced by microglial respiratory bursts played a major role in this Purkinje cell death. Our study illustrates a mammalian form of engulfment-promoted cell death that links the execution of neuron death to the scavenging of dead cells.


Assuntos
Apoptose/fisiologia , Comunicação Celular/fisiologia , Córtex Cerebelar/crescimento & desenvolvimento , Microglia/fisiologia , Células de Purkinje/fisiologia , Transdução de Sinais/fisiologia , Animais , Anticorpos/farmacologia , Caspase 3 , Caspases/metabolismo , Diferenciação Celular/fisiologia , Respiração Celular/efeitos dos fármacos , Respiração Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Córtex Cerebelar/citologia , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Terminações Pré-Sinápticas/fisiologia , Células de Purkinje/citologia , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores do Fator de Necrose Tumoral/metabolismo
11.
Neuroscience ; 385: 11-24, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29902504

RESUMO

During mobile phone conversations, the temporal lobe neural networks involved in processing auditory information are exposed to electromagnetic fields (EMF) such as pulse-modulated GSM-1800 MHz radiofrequencies that convey wireless communications. The effects of these EMF on the brain affected by a pathological condition remain little investigated. In this study, rats injected with lipopolysaccharide (LPS) to induce neuroinflammation were exposed "head-only" to GSM-1800 MHz signals for two hours at a specific absorption rate (SAR) that reached an average value of 1.55 W/kg in the auditory cortex (ACx). Immunodetection of Iba1, a microglial marker, and electrophysiological recordings in the ACx three to six hours after global system for communication (GSM) exposure, or sham-exposure, showed that exposure to GSM-1800 MHz resulted in a growth of microglial processes and a reduction in spontaneous firing rate. More importantly, there was a significant reduction in evoked responses to artificial and natural stimuli and an increase in response duration. The response latency and the bandwidth of the frequency tuning were unchanged, but the GSM exposure led to a higher proportion of cortical sites exhibiting abnormally high acoustic thresholds. These modifications were not observed in rats exposed to GSM-1800 MHz without pretreatment with LPS. Together our data provide evidence that in neuroinflammatory conditions, acute exposure to GSM-1800 MHz can significantly affect microglia and neuronal activity underling auditory perception.


Assuntos
Córtex Auditivo/efeitos da radiação , Inflamação/patologia , Microglia/efeitos da radiação , Neurônios/efeitos da radiação , Animais , Córtex Auditivo/patologia , Forma Celular/efeitos da radiação , Campos Eletromagnéticos , Inflamação/induzido quimicamente , Lipopolissacarídeos , Masculino , Microglia/patologia , Neurônios/patologia , Ratos , Ratos Wistar
12.
J Neurosci ; 26(12): 3345-56, 2006 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-16554485

RESUMO

Because senile plaques in Alzheimer's disease (AD) contain reactive microglia in addition to potentially neurotoxic aggregates of amyloid-beta (Abeta), we examined the influence of microglia on the viability of rodent neurons in culture exposed to aggregated Abeta 1-40. Microglia enhanced the toxicity of Abeta by releasing glutamate through the cystine-glutamate antiporter system Xc-. This may be relevant to Abeta toxicity in AD, because the system Xc(-)-specific xCT gene is expressed not only in cultured microglia but also in reactive microglia within or surrounding amyloid plaques in transgenic mice expressing mutant human amyloid precursor protein or in wild-type mice injected with Abeta. Inhibition of NMDA receptors or system Xc- prevented the microglia-enhanced neurotoxicity of Abeta but also unmasked a neuroprotective effect of microglia mediated by microglial secretion of apolipoprotein E (apoE) in the culture medium. Immunodepletion of apoE or targeted inactivation of the apoE gene in microglia abrogated neuroprotection by microglial conditioned medium, whereas supplementation by human apoE isoforms restored protection, which was potentiated by the presence of microglia-derived cofactors. These results suggest that inhibition of microglial system Xc- might be of therapeutic value in the treatment of AD. Its inhibition not only prevents glutamate excitotoxicity but also facilitates neuroprotection by apoE.


Assuntos
Doença de Alzheimer/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Peptídeos beta-Amiloides/toxicidade , Apolipoproteínas E/metabolismo , Microglia/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/toxicidade , Doença de Alzheimer/fisiopatologia , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Apolipoproteínas E/genética , Comunicação Celular/fisiologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Ácido Glutâmico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Degeneração Neural/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Wistar
13.
Curr Opin Neurobiol ; 15(1): 101-7, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15721751

RESUMO

Cell corpses generated during CNS development are eliminated through phagocytosis performed by a variety of cells, including mesenchyme-derived macrophages and microglia, or glial cells originating in the neurogenic ectoderm. Mounting evidence indicates that in different species, phagocytes not only clear cell corpses but also engulf still-living neural cells or axons, and thereby promote cell death or axon pruning. Knowledge of the mechanisms of corpse recognition by engulfing cells provides molecular signals to this new role for phagocytes. These observations support a conserved and instructive role for phagocytosis in the execution of regressive events during neurogenesis.


Assuntos
Apoptose/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Fagocitose/fisiologia , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Humanos , Neurônios/citologia , Neurônios/fisiologia
14.
Neurotox Res ; 32(3): 444-459, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28578480

RESUMO

Mobile phone communications are conveyed by radiofrequency (RF) electromagnetic fields, including pulse-modulated global system for mobile communications (GSM)-1800 MHz, whose effects on the CNS affected by pathological states remain to be specified. Here, we investigated whether a 2-h head-only exposure to GSM-1800 MHz could impact on a neuroinflammatory reaction triggered by lipopolysaccharide (LPS) in 2-week-old or adult rats. We focused on the cerebral cortex in which the specific absorption rate (SAR) of RF averaged 2.9 W/kg. In developing rats, 24 h after GSM exposure, the levels of cortical interleukin-1ß (IL1ß) or NOX2 NADPH oxidase transcripts were reduced by 50 to 60%, in comparison with sham-exposed animals (SAR = 0), as assessed by RT-qPCR. Adult rats exposed to GSM also showed a 50% reduction in the level of IL1ß mRNA, but they differed from developing rats by the lack of NOX2 gene suppression and by displaying a significant growth response of microglial cell processes imaged in anti-Iba1-stained cortical sections. As neuroinflammation is often associated with changes in excitatory neurotransmission, we evaluated changes in expression and phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult cerebral cortex by Western blot analyses. We found that GSM exposure decreased phosphorylation at two residues on the GluA1 AMPAR subunit (serine 831 and 845). The GSM-induced changes in gene expressions, microglia, and GluA1 phosphorylation did not persist 72 h after RF exposure and were not observed in the absence of LPS pretreatment. Together, our data provide evidence that GSM-1800 MHz can modulate CNS cell responses triggered by an acute neuroinflammatory state.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/imunologia , Campos Eletromagnéticos , Inflamação/metabolismo , Neurônios/imunologia , Doença Aguda , Animais , Telefone Celular , Córtex Cerebral/patologia , Modelos Animais de Doenças , Inflamação/patologia , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Masculino , Microglia/imunologia , Microglia/patologia , Microglia/efeitos da radiação , NADPH Oxidase 2/metabolismo , Neuroimunomodulação , Neurônios/patologia , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores de AMPA/metabolismo
15.
Eur J Neurosci ; 3(11): 1155-1164, 1991 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12106245

RESUMO

Brain macrophages are transiently present in different regions of the central nervous system during development or in the course of tissue remodelling following various types of injuries. To investigate the influence of these phagocytes on neuronal growth and survival, brain macrophages stemming from the cerebral cortex of rat embryos were added to neuronal primary cultures. A neurotoxic effect of brain macrophages was demonstrated by the reduction of the number of neurons bearing neurites within two days of contact between the two cell types. Neuronal death and phagocytosis were also directly observed in video recordings of living cultures. This toxicity involved the production by brain macrophages of reactive oxygen intermediates, as shown by the protective effect of catalase, a scavenger of H2O2. In addition, the respiratory bursts of brain macrophages were stimulated in the presence of neurons. These results suggest that brain macrophages could favour the appearance of neuroregressive events which occur either during neurogenesis or in neurodegenerative diseases, implying intracerebral recruitment of mononuclear phagocytes.

17.
Neurotox Res ; 20(2): 109-19, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21042961

RESUMO

The increasing use of mobile phones by children raise issues about the effects of electromagnetic fields (EMF) on the immature Central Nervous System (CNS). In the present study, we quantified cell stress and glial responses in the brain of developing rats one day after a single exposure of 2 h to a GSM 1,800 MHz signal at a brain average Specific Absorption Rate (SAR) in the range of 1.7 to 2.5 W/kg. Young rats, exposed to EMF on postnatal days (P) 5 (n = 6), 15 (n = 5) or 35 (n = 6), were compared to pseudo-exposed littermate rats (n = 6 at all ages). We used western blotting to detect heat shock proteins (HSPs) and cytoskeleton- or neurotransmission-related proteins in the developing astroglia. The GSM signal had no significant effect on the abundance of HSP60, HSC70 or HSP90, of serine racemase, glutamate transporters including GLT1 and GLAST, or of glial fibrillary acid protein (GFAP) in either total or soluble tissue extracts. Imunohistochemical detection of CD68 antigen in brain sections from pseudo-exposed and exposed animals did not reveal any differences in the morphology or distribution of microglial cells. These results provide no evidence for acute cell stress or glial reactions indicative of early neural cell damage, in developing brains exposed to 1,800 MHz signals in the range of SAR used in our study.


Assuntos
Encéfalo , Campos Eletromagnéticos , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Proteínas de Choque Térmico/metabolismo , Neuroglia/efeitos da radiação , Fatores Etários , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/efeitos da radiação , Contagem de Células/métodos , Embrião de Mamíferos , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Neuroglia/metabolismo , Gravidez , Racemases e Epimerases/metabolismo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA