Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Hazard Mater ; 451: 131147, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893601

RESUMO

Perovskite photovoltaics offer a highly efficient and low-cost solar energy harvesting technology. However, the presence of lead (Pb) cations in photovoltaic halide perovskite (HaPs) materials is concerning, and quantifying the environmental hazard of accidental Pb2+ leaching into the soil is crucial for assessing the sustainability of this technology. Pb2+ from inorganic salts was previously found to remain in the upper soil layers due to adsorption. However, Pb-HaPs contain additional organic and inorganic cations, and competitive cation adsorption may affect Pb2+ retention in soils. Therefore, we measured, analyzed by simulations and report the depths to which Pb2+ from HaPs penetrates into 3 types of agricultural soil. Most of the HaP-leached Pb2+ is found to be retained already in the first cm of the soil columns, and subsequent rain events do not induce Pb2+ penetration below the first few cm of soil surface. Surprisingly, organic co-cations from the dissolved HaP are found to enhance the Pb2+ adsorption capacity in clay-rich soil, compared to non-HaP-based Pb2+ sources. Our results imply that installation over soil types with improved Pb2+ adsorption, and removal of only the contaminated topsoil, are sufficient means to prevent ground water contamination by HaP-leached Pb2+.

2.
Sci Rep ; 9(1): 18902, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31806874

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Sci Rep ; 9(1): 2987, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814544

RESUMO

The question, whether an open system dynamics is Markovian or non-Markovian can be answered by studying the direction of the information flow in the dynamics. In Markovian dynamics, information must always flow from the system to the environment. If the environment is interacting with only one of the subsystems of a bipartite system, the dynamics of the entanglement in the bipartite system can be used to identify the direction of information flow. Here we study the dynamics of a two-level system interacting with an environment, which is also a heat bath, and consists of a large number of two-level quantum systems. Our model can be seen as a close approximation to the 'spin bath' model at low temperatures. We analyze the Markovian nature of the dynamics, as we change the coupling between the system and the environment. We find the Kraus operators of the dynamics for certain classes of couplings. We show that any form of time-independent or time-polynomial coupling gives rise to non-Markovianity. Also, we witness non-Markovianity for certain parameter values of time-exponential coupling. Moreover, we study the transition from non-Markovian to Markovian dynamics as we change the value of coupling strength.

4.
J Phys Chem Lett ; 8(19): 4960-4966, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28944675

RESUMO

For halide perovskite solar cells (PSCs) to fulfill their vast potential for combining low-cost, high efficiency, and high throughput production they must be scaled using a truly transformative method, such as roll-to-roll processing. Bringing this reality closer to fruition, the present work demonstrates flexible perovskite solar cells with 18.1% power conversion efficiency on flexible Willow Glass substrates. We highlight the importance of the transparent conductive oxide (TCO) layers on device performance by studying various TCOs. While tin-doped indium oxide (ITO) and indium zinc oxide (IZO) based PSC devices demonstrate high photovoltaic performances, aluminum-doped zinc oxide (AZO) based devices underperformed in all device parameters. Analysis of X-ray photoemission spectroscopy data shows that the stoichiometry of the perovskite film surface changes dramatically when it is fabricated on AZO, demonstrating the importance of the substrate in perovskite film formation.

5.
Sci Rep ; 6: 25779, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27184159

RESUMO

Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA