RESUMO
Little is known about how the brain's functional organization changes over time with respect to structural damage. Using multiple sclerosis as a model of structural damage, we assessed how much functional connectivity (FC) changed within and between preselected resting-state networks (RSNs) in 122 subjects (72 with multiple sclerosis and 50 healthy controls). We acquired the structural, diffusion, and functional MRI to compute functional connectomes and structural disconnectivity profiles. Change in FC was calculated by comparing each multiple sclerosis participant's pairwise FC to controls, while structural disruption (SD) was computed from abnormalities in diffusion MRI via the Network Modification tool. We used an ordinary least squares regression to predict the change in FC from SD for 9 common RSNs. We found clear differences in how RSNs functionally respond to structural damage, namely that higher-order networks were more likely to experience changes in FC in response to structural damage (default mode R2 = 0.160-0.207, P < 0.001) than lower-order sensory networks (visual network 1 R2 = 0.001-0.007, P = 0.157-0.387). Our findings suggest that functional adaptability to structural damage depends on how involved the affected network is in higher-order processing.
Assuntos
Encéfalo , Esclerose Múltipla , Humanos , Encéfalo/diagnóstico por imagem , Esclerose Múltipla/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância MagnéticaRESUMO
BACKGROUND AND OBJECTIVES: Intraoperative photodynamic therapy (IO-PDT) is typically administered by a handheld light source. This can result in uncontrolled distribution of light irradiance that impacts tissue and tumor response to photodynamic therapy. The objective of this work was to characterize a novel optical surface applicator (OSA) designed to administer controlled light irradiance in IO-PDT. STUDY DESIGN/MATERIALS AND METHODS: An OSA was constructed from a flexible silicone mesh applicator with multiple cylindrically diffusing optical fibers (CDF) placed into channels of the silicone. Light irradiance distribution, at 665 nm, was evaluated on the OSA surface and after passage through solid tissue-mimicking optical phantoms by measurements from a multi-channel dosimetry system. As a proof of concept, the light administration of the OSA was tested in a pilot study by conducting a feasibility and performance test with 665-nm laser light to activate 2-(1'-hexyloxyethyl) pyropheophorbide-a (HPPH) in the thoracic cavity of adult swine. RESULTS: At the OSA surface, the irradiance distribution was non-uniform, ranging from 128 to 346 mW/cm2 . However, in the tissue-mimicking phantoms, beam uniformity improved markedly, with irradiance ranges of 39-153, 33-87, and 12-28 mW/cm2 measured at phantom thicknesses of 3, 5, and 10 mm, respectively. The OSA safely delivered the prescribed light dose to the thoracic cavities of four swine. CONCLUSIONS: The OSA can provide predictable light irradiances for administering a well-defined and potentially effective therapeutic light in IO-PDT. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Assuntos
Lasers Semicondutores/uso terapêutico , Fotoquimioterapia/instrumentação , Cavidade Torácica/efeitos da radiação , Animais , Humanos , Imagens de Fantasmas , Silicones , SuínosRESUMO
Cognitive reserve is one's mental resilience or resistance to the effects of structural brain damage. Reserve effects are well established in people with multiple sclerosis (PwMS) and Alzheimer's disease, but the neural basis of this phenomenon is unclear. We aimed to investigate whether preservation of functional connectivity explains cognitive reserve. Seventy-four PwMS and 29 HCs underwent neuropsychological assessment and 3 T MRI. Structural damage measures included gray matter (GM) atrophy and network white matter (WM) tract disruption between pairs of GM regions. Resting-state functional connectivity was also assessed. PwMS exhibited significantly impaired cognitive processing speed (t = 2.14, p = .037) and visual/spatial memory (t = 2.72, p = .008), and had significantly greater variance in functional connectivity relative to HCs within relevant networks (p < .001, p < .001, p = .016). Higher premorbid verbal intelligence, a proxy for cognitive reserve, predicted relative preservation of functional connectivity despite accumulation of GM atrophy (standardized-ß = .301, p = .021). Furthermore, preservation of functional connectivity attenuated the impact of structural network WM tract disruption on cognition (ß = -.513, p = .001, for cognitive processing speed; ß = -.209, p = .066, for visual/spatial memory). The data suggests that preserved functional connectivity explains cognitive reserve in PwMS, helping to maintain cognitive capacity despite structural damage.
Assuntos
Encéfalo/diagnóstico por imagem , Reserva Cognitiva/fisiologia , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Adulto , Idoso , Encéfalo/fisiologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Testes de Estado Mental e Demência , Pessoa de Meia-Idade , Esclerose Múltipla/psicologia , Rede Nervosa/fisiologiaRESUMO
Quantifying white matter (WM) tract disruption in people with multiple sclerosis (PwMS) provides a novel means for investigating the relationship between defective network connectivity and clinical markers. PwMS exhibit perturbations in personality, where decreased Conscientiousness is particularly prominent. This trait deficit influences disease trajectory and functional outcomes such as work capacity. We aimed to identify patterns of WM tract disruption related to decreased Conscientiousness in PwMS. Personality assessment and brain MRI were obtained in 133 PwMS and 49 age- and sex-matched healthy controls (HC). Lesion maps were applied to determine the severity of WM tract disruption between pairs of gray matter regions. Next, the Network-Based-Statistics tool was applied to identify structural networks whose disruption negatively correlates with Conscientiousness. Finally, to determine whether these networks explain unique variance above conventional MRI measures and cognition, regression models were applied controlling for age, sex, brain volume, T2-lesion volume, and cognition. Relative to HCs, PwMS exhibited lower Conscientiousness and slowed cognitive processing speed (p = .025, p = .006). Lower Conscientiousness in PwMS was significantly associated with WM tract disruption between frontal, frontal-parietal, and frontal-cingulate pathways in the left (p = .02) and right (p = .01) hemisphere. The mean disruption of these pathways explained unique additive variance in Conscientiousness, after accounting for conventional MRI markers of pathology and cognition (ΔR2 = .049, p = .029). Damage to WM tracts between frontal, frontal-parietal, and frontal-cingulate cortical regions is significantly correlated with reduced Conscientiousness in PwMS. Tract disruption within these networks explains decreased Conscientiousness observed in PwMS as compared with HCs.
Assuntos
Córtex Cerebral/patologia , Transtornos Cognitivos/diagnóstico por imagem , Consciência , Imagem de Tensor de Difusão , Esclerose Múltipla/psicologia , Rede Nervosa/patologia , Substância Branca/patologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Rede Nervosa/diagnóstico por imagem , Tamanho do Órgão , Inventário de Personalidade , Psicometria , Substância Branca/diagnóstico por imagemRESUMO
PURPOSE/OBJECTIVES: To retrospectively evaluate the plan quality, treatment efficiency, and accuracy of volumetric modulated arc therapy (VMAT) plans for thoracic spine metastases using stereotactic body radiotherapy (SBRT). MATERIALS/METHODS: Seven patients with thoracic vertebral metastases treated with noncoplanar hybrid arcs (NCHA) (1 to 2 3D-conformal partial arcs +7 to 9 IMRT beams) were re-optimized with VMAT plans using three coplanar arcs. Tumors were located between T2 and T7 and PTVs ranged between 24.3 and 240.1 cc (median 48.1 cc). All prescriptions were 30 Gy in 5 fractions with 6 MV beams treated using the Novalis Tx linac equipped with high definition multileaf collimators (HDMLC). MR images were fused with planning CTs for target and OAR contouring. Plans were compared for target coverage using conformality index (CI), homogeneity index (HI), D90, D98, D2, and Dmedian. Normal tissue sparing was evaluated by comparing doses to the spinal cord (Dmax, D0.35, and D1.2 cc), esophagus (Dmax and D5 cc), heart (Dmax, D15 cc), and lung (V5 and V10). Data analysis was performed with a two-sided t-test for each set of parameters. Dose delivery efficiency and accuracy of each VMAT plan was assessed via quality assurance (QA) using a MapCHECK device. The Beam-on time (BOT) was recorded, and a gamma index was used to compare dose agreement between the planned and measured doses. RESULTS: VMAT plans resulted in improved CI (1.02 vs. 1.36, P = 0.05), HI (0.14 vs. 0.27, P = 0.01), D98 (28.4 vs. 26.8 Gy, P = 0.03), D2 (32.9 vs. 36.0 Gy, P = 0.02), and Dmedian (31.4 vs. 33.7 Gy, P = 0.01). D90 was improved but not statistically significant (30.4 vs. 31.0 Gy, P = 0.38). VMAT plans showed statistically significant improvements in normal tissue sparing: Esophagus Dmax (22.5 vs. 27.0 Gy, P = 0.03), Esophagus 5 cc (17.6 vs. 21.5 Gy, P = 0.02), and Heart Dmax (13.1 vs. 15.8 Gy, P = 0.03). Improvements were also observed in spinal cord and lung sparing as well but were not statistically significant. The BOT showed significant reduction for VMAT, 4.7 ± 0.6 min vs. 7.1 ± 1 min for NCHA (not accounting for couch kicks). VMAT plans demonstrated an accurate dose delivery of 95.5 ± 1.0% for clinical gamma passing rate of 3%/3 mm criteria, which was similar to NCHA plans. CONCLUSIONS: VMAT plans have shown improved dose distributions and normal tissue sparing compared to NCHA plans. Significant reductions in treatment time could potentially minimize patient discomfort and intrafraction movement errors. VMAT planning for SBRT is an attractive option for the treatment of metastases to thoracic vertebrae, and further investigation using alternative fractionation schedules is warranted.
Assuntos
Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias da Coluna Vertebral/cirurgia , Neoplasias Torácicas/cirurgia , Seguimentos , Humanos , Órgãos em Risco/efeitos da radiação , Prognóstico , Dosagem Radioterapêutica , Estudos Retrospectivos , Neoplasias da Coluna Vertebral/secundário , Neoplasias Torácicas/patologiaRESUMO
Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1. Subclass and subtype comparisons showed stronger transcriptomic differences in human L1 and were correlated with strong morphoelectric variability along dimensions distinct from mouse L1 variability. Accompanied by greater layer thickness and other cytoarchitecture changes, these findings suggest that L1 has diverged in evolution, reflecting the demands of regulating the expanded human neocortical circuit.
Assuntos
Neocórtex , Animais , Humanos , Camundongos , Axônios/metabolismo , Interneurônios/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Células Piramidais/metabolismo , TranscriptomaRESUMO
Human cortex transcriptomic studies have revealed a hierarchical organization of γ-aminobutyric acid-producing (GABAergic) neurons from subclasses to a high diversity of more granular types. Rapid GABAergic neuron viral genetic labeling plus Patch-seq (patch-clamp electrophysiology plus single-cell RNA sequencing) sampling in human brain slices was used to reliably target and analyze GABAergic neuron subclasses and individual transcriptomic types. This characterization elucidated transitions between PVALB and SST subclasses, revealed morphological heterogeneity within an abundant transcriptomic type, identified multiple spatially distinct types of the primate-specialized double bouquet cells (DBCs), and shed light on cellular differences between homologous mouse and human neocortical GABAergic neuron types. These results highlight the importance of multimodal phenotypic characterization for refinement of emerging transcriptomic cell type taxonomies and for understanding conserved and specialized cellular properties of human brain cell types.
Assuntos
Neurônios GABAérgicos , Interneurônios , Neocórtex , Animais , Humanos , Camundongos , Fenômenos Eletrofisiológicos , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Interneurônios/metabolismo , Neocórtex/citologia , Neocórtex/metabolismo , Técnicas de Patch-ClampRESUMO
The objective of the present study was to develop a predictive model for Photofrin® -mediated interstitial photodynamic therapy (I-PDT) of locally advanced tumors. Our finite element method was used to simulate 630-nm intratumoral irradiance and fluence for C3H mice and New Zealand White rabbits bearing large squamous cell carcinomas. Animals were treated with light only or I-PDT using the same light settings. I-PDT was administered with Photofrin® at 5.0 or 6.6 mg kg-1 , 24 h drug-light interval. The simulated threshold fluence was fixed at 45 J cm-2 while the simulated threshold irradiance varied, intratumorally. No cures were obtained in the mice treated with a threshold irradiance of 5.4 mW cm-2 . However, 20-90% of the mice were cured when the threshold irradiances were ≥8.6 mW cm-2 . In the rabbits treated with I-PDT, 13 of the 14 VX2 tumors showed either local control or were cured when threshold irradiances were ≥15.3 mW cm-2 and fluence was 45 J cm-2 . No tumor growth delay was observed in VX2 treated with light only (n = 3). In the mouse studies, there was a high probability (92.7%) of predicting cure when the initial tumor volume was below the median (493.9 mm3 ) and I-PDT was administered with a threshold intratumoral irradiance ≥8.6 mW cm-2 .
Assuntos
Éter de Diematoporfirina/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Éter de Diematoporfirina/administração & dosagem , Relação Dose-Resposta à Radiação , Camundongos , Camundongos Endogâmicos C3H , Neoplasias/patologia , Fármacos Fotossensibilizantes/administração & dosagem , CoelhosRESUMO
BACKGROUND: The acute sensitivity of some hybridoma cell lines to culture-related stresses severely limits their productivity. Recent developments in the characterization of the stress signals modulating the cellular phenotype revealed that the pro-apoptotic transcription factor Gadd153 could be used as a marker to facilitate the optimization of mammalian cell cultures. In this report, we analyzed the expression of Gadd153 in Sp2/0-Ag14 murine hybridoma cells grown in stationary batch culture and subjected to two different culture optimization paradigms: L-glutamine supplementation and ectopic expression of Bcl-xL, an anti-apoptotic gene. RESULTS: The expression of Gadd153 was found to increase in Sp2/0-Ag14 cells in a manner which coincided with the decline in cell viability. L-glutamine supplementation prolonged Sp2/0-Ag14 cell survival and greatly suppressed Gadd153 expression both at the mRNA and protein level. However, Gadd153 levels remained low after L-glutamine supplementation even as cell viability declined. Bcl-xL overexpression also extended Sp2/0-Ag14 cell viability, initially delayed the induction of Gadd153, but did not prevent the increase in Gadd153 protein levels during the later phase of the culture, when cell viability was declining. Interestingly, L-glutamine supplementation prevented Gadd153 up-regulation in cells ectopically expressing Bcl-xL, but had no effect on cell viability. CONCLUSION: This study highlights important limitations to the use of Gadd153 as an indicator of cell stress in hybridoma cells.
Assuntos
Sobrevivência Celular , Hibridomas/citologia , Hibridomas/metabolismo , Fator de Transcrição CHOP/análise , Fator de Transcrição CHOP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose , Biomarcadores , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Meios de Cultura , Regulação da Expressão Gênica/efeitos dos fármacos , Glutamina/farmacologia , Camundongos , Proteína bcl-X/farmacologiaRESUMO
To retrospectively evaluate quality, efficiency, and delivery accuracy of volumetric-modulated arc therapy (VMAT) plans for single-fraction treatment of thoracic vertebral metastases using image-guided stereotactic body radiosurgery (SBRS) after RTOG 0631 dosimetric compliance criteria. After obtaining credentialing for MD Anderson spine phantom irradiation validation, 10 previously treated patients with thoracic vertebral metastases with noncoplanar hybrid arcs using 1 to 2 3D-conformal partial arcs plus 7 to 9 intensity-modulated radiation therapy beams were retrospectively re-optimized with VMAT using 3 full coplanar arcs. Tumors were located between T2 and T12. Contrast-enhanced T1/T2-weighted magnetic resonance images were coregistered with planning computed tomography and planning target volumes (PTV) were between 14.4 and 230.1cc (median = 38.0cc). Prescription dose was 16Gy in 1 fraction with 6MV beams at Novalis-TX linear accelerator consisting of micro multileaf collimators. Each plan was assessed for target coverage using conformality index, the conformation number, the ratio of the volume receiving 50% of the prescription dose over PTV, R50%, homogeneity index (HI), and PTV_1600 coverage per RTOG 0631 requirements. Organs-at-risk doses were evaluated for maximum doses to spinal cord (D0.03cc, D0.35cc), partial spinal cord (D10%), esophagus (D0.03cc and D5cc), heart (D0.03cc and D15cc), and lung (V5, V10, and maximum dose to 1000cc of lung). Dose delivery efficiency and accuracy of each VMAT-SBRS plan were assessed using quality assurance (QA) plan on MapCHECK device. Total beam-on time was recorded during QA procedure, and a clinical gamma index (2%/2mm and 3%/3mm) was used to compare agreement between planned and measured doses. All 10 VMAT-SBRS plans met RTOG 0631 dosimetric requirements for PTV coverage. The plans demonstrated highly conformal and homogenous coverage of the vertebral PTV with mean HI, conformality index, conformation number, and R50% values of 0.13 ± 0.03 (range: 0.09 to 0.18), 1.03 ± 0.04 (range: 0.98 to 1.09), 0.81 ± 0.06 (range: 0.72 to 0.89), and 4.2 ± 0.94 (range: 2.7 to 5.4), respectively. All 10 patients met protocol guidelines with maximum dose to spinal cord (average: 8.83 ± 1.9Gy, range: 5.9 to 10.9Gy); dose to 0.35cc of spinal cord (average: 7.62 ± 1.7Gy, range: 5.4 to 9.6Gy); and dose to 10% of partial spinal cord (average 6.31 ± 1.5Gy, range: 3.5 to 8.5Gy) less than 14, 10, and 10Gy, respectively. For all 10 patients, the maximum dose to esophagus (average: 9.41 ± 4.3Gy, range: 1.5 to 14.9Gy) and dose to 5cc of esophagus (average: 7.43 ± 3.8Gy, range: 1.1 to 11.8Gy) were kept less than protocol requirements 16Gy and 11.9Gy, respectively. In a similar manner, all 10 patients met protocol compliance criteria with maximum dose to heart (average: 4.62 ± 3.5Gy, range: 1.3 to 10.2Gy) and dose to 15cc of heart (average: 2.23 ± 1.8Gy, range: 0.3 to 5.6Gy) less than 22 and 16Gy, respectively. The dose to the lung was retained much lower than protocol guidelines for all 10 patients. The total number of monitor units was, on average, 6919 ± 1187. The average beam-on time was 11.5 ± 2.0 minutes. The VMAT plans demonstrated dose delivery accuracy of 95.8 ± 0.7%, on average, for clinical gamma passing rate with 2%/2mm criteria and 98.3 ± 0.8%, on average, with 3%/3mm criteria. All VMAT-SBRS plans were considered clinically acceptable per RTOG 0631 dosimetric compliance criteria. VMAT planning provided highly conformal and homogenous dose distributions for the lower-dose vertebral PTV and the spinal cord as well as organs-at-risk such as esophagus, heart, and lung. Higher QA pass rates and shorter beam-on time suggest that VMAT-SBRS is a clinically feasible, fast, and effective treatment option for patients with thoracic vertebral metastases.
Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Neoplasias da Coluna Vertebral/radioterapia , Vértebras Torácicas , Fidelidade a Diretrizes , Humanos , Doses de Radiação , Estudos Retrospectivos , Neoplasias da Coluna Vertebral/secundárioRESUMO
Hyperthermia has long been used for cancer treatment, either alone or in combination with chemotherapy, radiation therapy, or both. Its efficacy and versatility continue to be well demonstrated in randomized trials across a number of primary cancers, but barriers to its widespread adoption persist including effective delivery and verification systems. This article describes hyperthermia, details its biological mechanisms of action and immunological effects, and summarizes select preclinical data and key clinical trials combining hyperthermia with standard cancer treatments. Current challenges and emerging technologies that have the potential to make this translational therapy more accessible to a greater number of patients are also described.