RESUMO
Cladribine (Mavenclad®) is an oral treatment for relapsing remitting MS (RRMS), but its mechanism of action and its effects on innate immune responses in unknown. This study is a prospective Phase IV study of 41 patients with RRMS, and aims to investigate the mechanism of action of cladribine on peripheral monocytes, and its impact on the P2X7 receptor. There was a significant reduction in monocyte count in vivo at week 1 post cladribine administration, and the subset of cells being most impacted were the CD14lo CD16+ 'non-classical' monocytes. Of the 14 cytokines measured in serum, CCL2 levels increased at week 1. In vitro, cladrabine induced a reduction in P2X7R pore as well as channel activity. This study demonstrates a novel mechanism of action for cladribine. It calls for studying potential benefits of cladribine in progressive forms of MS and other neurodegenerative diseases where innate immune related inflammation is implicated in disease pathogenesis.
Assuntos
Cladribina , Citocinas , Imunidade Inata , Monócitos , Esclerose Múltipla Recidivante-Remitente , Humanos , Cladribina/uso terapêutico , Cladribina/farmacologia , Imunidade Inata/efeitos dos fármacos , Feminino , Masculino , Adulto , Estudos Prospectivos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/sangue , Monócitos/imunologia , Monócitos/efeitos dos fármacos , Pessoa de Meia-Idade , Citocinas/sangue , Citocinas/imunologia , Receptores Purinérgicos P2X7/imunologia , Imunossupressores/uso terapêutico , Imunossupressores/farmacologia , Adulto JovemRESUMO
Epigenetic mechanisms can regulate how DNA is expressed independently of sequence and are known to be associated with various diseases. Among those epigenetic mechanisms, DNA methylation (DNAm) is influenced by genotype and the environment, making it an important molecular interface for studying disease etiology and progression. In this study, we examined the whole blood DNA methylation profiles of a large group of people with (pw) multiple sclerosis (MS) compared to those of controls. We reveal that methylation differences in pwMS occur independently of known genetic risk loci and show that they more strongly differentiate disease (AUC = 0.85, 95% CI 0.82-0.89, p = 1.22 × 10-29) than known genetic risk loci (AUC = 0.72, 95% CI: 0.66-0.76, p = 9.07 × 10-17). We also show that methylation differences in MS occur predominantly in B cells and monocytes and indicate the involvement of cell-specific biological pathways. Overall, this study comprehensively characterizes the immune cell-specific epigenetic architecture of MS.
Assuntos
Monócitos , Esclerose Múltipla , Humanos , Metilação de DNA , Esclerose Múltipla/genética , Linfócitos B , Epigênese GenéticaRESUMO
Histone H3 lysine 4 trimethylation (H3K4me3) is a hallmark of transcription initiation, but how H3K4me3 is demethylated during gene repression is poorly understood. Jhd2, a JmjC domain protein, was recently identified as the major H3K4me3 histone demethylase (HDM) in Saccharomyces cerevisiae. Although JHD2 is required for removal of methylation upon gene repression, deletion of JHD2 does not result in increased levels of H3K4me3 in bulk histones, indicating that this HDM is unable to demethylate histones during steady-state conditions. In this study, we showed that this was due to the negative regulation of Jhd2 activity by histone H3 lysine 14 acetylation (H3K14ac), which colocalizes with H3K4me3 across the yeast genome. We demonstrated that loss of the histone H3-specific acetyltransferases (HATs) resulted in genome-wide depletion of H3K4me3, and this was not due to a transcription defect. Moreover, H3K4me3 levels were reestablished in HAT mutants following loss of JHD2, which suggested that H3-specific HATs and Jhd2 serve opposing functions in regulating H3K4me3 levels. We revealed the molecular basis for this suppression by demonstrating that H3K14ac negatively regulated Jhd2 demethylase activity on an acetylated peptide in vitro. These results revealed the existence of a general mechanism for removal of H3K4me3 following gene repression.
Assuntos
Histonas/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Regulação Fúngica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histona Desmetilases com o Domínio Jumonji , Metilação , Modelos Biológicos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Especificidade por SubstratoRESUMO
Lymphocytic hypophysitis is an organ-specific autoimmune disease characterised by destruction of pituitary hormone-secreting cells due to attack by self-reactive T lymphocytes. The spectrum of pituitary autoantibodies characterised by indirect immunofluorescence (IF) in these patients has not been substantially defined. The purpose of this study was to determine the spectrum of pituitary autoantibodies in 16 lymphocytic hypophysitis patients. Pituitary sections were prepared from guinea pigs and sera from 16 lymphocytic hypophysitis patients (13 biopsy proven and 3 suspected cases) and 13 healthy controls were evaluated for immunoreactivity to the pituitary tissue by immunofluorescence. A single patient was found to have high titre pituitary autoantibodies against guinea pig pituitary tissue. Immunoreactivity was directed against cells of the intermediate lobe. We present the case report of the patient who is a 24 year old woman that presented with headaches, polyuria and polydipsia. A uniformly enlarged pituitary mass was visible on MRI and a diagnosis of suspected lymphocytic hypophysitis was made. Based on our IF study, we postulate this patient has an autoimmune process directed towards the major cell type in the intermediate lobe, the melanotroph. Pre-adsorption with peptides representing adrenocorticotropic hormone, α-melanocyte stimulating hormone or ß-endorphin did not affect the IF signal suggesting our patient's pituitary autoantibodies may target some other product of Proopiomelanocortin (POMC) processing, such as corticotrophin-like intermediate peptide or γ-lipoprotein. Alternatively, the autoantibodies may target a peptide completely unrelated to POMC processing.
Assuntos
Autoanticorpos/sangue , Doenças Autoimunes/imunologia , Hipopituitarismo/imunologia , Hipófise/imunologia , Animais , Feminino , Imunofluorescência , Cobaias , Humanos , Imageamento por Ressonância Magnética , Masculino , Hipófise/patologia , Pró-Opiomelanocortina/imunologia , Pró-Opiomelanocortina/metabolismoRESUMO
BACKGROUND AND PURPOSE: Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a relapsing demyelinating condition. There are several cross-sectional studies showing evidence of brain atrophy in people with MOGAD (pwMOGAD), but longitudinal brain volumetric assessment is still an unmet need. Current recommendations do not include monitoring with MRI and assume distinct attacks. Evidence of ongoing axon loss will have diagnostic and therapeutic implications. In this study, we assessed brain volume changes in pwMOGAD over a mean follow-up period of 2 years and compared this to changes in people with multiple sclerosis (pwMS). METHODS: This is a retrospective single-center study over a 7-year period from 2014 to 2021. MRI brain scans at the time of diagnosis and follow-up in remission were collected from 14 Caucasian pwMOGAD, confirmed by serum myelin oligodendrocyte glycoprotein immunoglobulin G antibody presence, detected by live cell-based assays. Total brain volume (TBV), white matter (WM), gray matter (GM), and demyelinating lesion volumes were assessed automatically using the Statistical Parametric Mapping and FMRIB automated segmentation tools. MRI brain scans at diagnosis and follow-up on remission were collected from 32-matched pwMS for comparison. Statistical analysis was done using analysis of variance. RESULTS: There is evidence of TBV loss, affecting particularly GM, over an approximately 2-year follow-up period in pwMOGAD (p < .05), comparable to pwMS. WM and lesion volume change over the same period were not statistically significant (p > .1). CONCLUSION: We found evidence of loss of GM and TBV over time in pwMOGAD, similar to pwMS, although the WM and lesion volumes were unchanged.
Assuntos
Encéfalo , Esclerose Múltipla , Humanos , Glicoproteína Mielina-Oligodendrócito , Estudos Retrospectivos , Estudos Transversais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética/métodosRESUMO
BACKGROUND: Cognitive impairment is a hallmark of multiple sclerosis (MS) but is usually an under-recorded symptom of disease progression. Identifying the predictive signatures of cognitive decline in people with MS (pwMS) over time is important to ensure effective preventative treatment strategies. Structural and functional brain characteristics as measured by various magnetic resonance (MR) methods have been correlated with variation in cognitive function in MS, but typically these studies are limited to a single MR modality and/or are cross-sectional designs. Here we assess the predictive value of multiple different MR modalities in relation to cognitive decline in pwMS over 5 years. METHODS: A cohort of 43 pwMS was assessed at baseline and 5 years follow-up. Baseline (input) data consisted of 70 multi-modal MRI measures for different brain regions including magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI) and standard volumetrics. Age, sex, disease duration and treatment were included as clinical inputs. Cognitive function was assessed using the Audio Recorded Cognitive Screen (ARCS) and the Symbol Digit Modalities Test (SDMT). Prediction modelling was performed using the machine learning package - GLMnet, where a penalised regression was applied to identify multi-modal signatures with the most predictive value (and the least error) for each outcome. RESULTS: The multi-modal approach to neuroimaging was able to accurately predict cognitive decline in pwMS. The best performing model for change in total ARCS (tARCS) included 16 features from across the various MR modalities and explained 54 % of the variation in change over time (R2=0.54, 95 % CI=0.48-0.51). The features included nine MRS, four volumetric and two DTI parameters. The model also selected disease duration, but not treatment, as a predictive feature. By comparison, the best model for SDMT included several of the same above features and explained 39 % of the change over time (R2=0.39, 95 % CI=0.48-0.51). Conventional volumetric measures were about half as good at predicting change in tARCS score compared to the best multi-modal model (R2=0.26 95 % CI:0.22-0.29). The clinical interpretation of the best predictive model for change in tARCS showed that cognitive decline could be predicted with >90 % accuracy in this cohort (AUC=0.92, SE=0.86 - 0.94). CONCLUSION: Multi-modal MRI signatures can predict cognitive decline in a cohort of pwMS over 5 years with high accuracy. Future studies will benefit from the inclusion of even more MR modalities e.g., functional MRI, quantitative susceptibility mapping, magnetisation transfer imaging, as well as other potential predictors e.g., genetic and environmental factors. With further validation, this signature could be used in future trials with high-risk patients to personalise the management of cognitive decline in pwMS, even in the absence of relapses.
Assuntos
Disfunção Cognitiva , Esclerose Múltipla , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Imagem de Tensor de Difusão , Estudos Longitudinais , Estudos Transversais , Neuroimagem/métodos , Imageamento por Ressonância Magnética/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologiaRESUMO
INTRODUCTION: Newcastle, Australia, has been serially studied for MS epidemiology since 1961, showing consistently increasing prevalence estimates and incidence rates, including to our 2011 study. OBJECTIVES: To assess the 2011-2021 epidemiology of MS in Newcastle and to compare with previous measures. METHODS: Demographic and clinical data were extracted from medical records of MS cases residing in Newcastle, as identified by public and private clinicians. Prevalence (2011 and 2021) and incidence rates (2011-2021, from onset and from diagnosis) and mortality rate (2011-2021) were estimated and age-standardised to the 2021 Australian population. RESULTS: The 2021 prevalence was 173.1/100,000 (age-standardised = 178.7/100,000, F/M-sex-ratio = 3.3), a 42.2 % increase from 2011 (F/M-sex-ratio = 3.1), 175.0 % from 1996 (F/M-sex-ratio = 2.6), and 831.0 % from 1961 (F/M-sex-ratio = 1.2). The 2011-21 age-standardised onset incidence rate was 3.5/100,000 person-years (F/M-sex-ratio = 2.8), a 68.7 % increase from 1971 to 81 (F/M-sex-ratio = 1.1) and 44.5 % from 1986 to 96 (F/M-sex-ratio = 2.3). The age-standardised diagnosis incidence rate was 6.1/100,000 (F/M-sex-ratio = 2.2), statistically unchanged from that in 2001-2011 (6.8/100,000, F/M-sex-ratio = 3.2). The 2011-21 mortality rate was 2.1/100,000 person-years (2.2 age-standardised, F/M-sex-ratio = 1.4), with a standardised mortality ratio of 1.6. CONCLUSION: The Newcastle region continues to be a high frequency zone for MS. The incidence rate from onset is significantly increased from previous estimates, but incidence rate from diagnosis is stable. Prevalence and incidence sex ratios have stabilised at roughly 3.0, similar to other Australian sites.
Assuntos
Esclerose Múltipla , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Incidência , Esclerose Múltipla/epidemiologia , Adulto , Prevalência , Austrália/epidemiologia , Estudos Longitudinais , Idoso , Adulto Jovem , AdolescenteRESUMO
Background: Cladribine is a useful therapeutic option in RRMS with moderate to high disease activity. Its oral formulation and tolerability make it a useful alternative to infusion therapies. Cladribine is known to deplete CD19+ B lymphocytes, but its effect on immunoglobulin subsets is unclear. Objective: To identify whether cladribine therapy in pwMS reduces immunoglobulin subset levels as a surrogate marker of infection risk. Methods: A 'real-world' retrospective analysis of 341 pwMS presenting to a single tertiary centre between March 2017 and July 2021. Differences in immunoglobulin levels between cladribine, other disease-modifying therapies and no active treatment were assessed using a univariate ANOVA. Results: Three hundred and forty-one patients had immunoglobulin levels assessed, with 29 patients treated with cladribine. The mean IgG, IgM and IgA levels on cladribine therapy were 10.44 ± 0.40, 0.99 ± 0.09 and 2.04 ± 0.18â g/L respectively. These were not significantly different from patients not on active treatment. There was a statistically significant reduction in IgG and IgM levels for patients treated with ocrelizumab (9.37 ± 0.19 and 0.68 ± 0.04â g/L) and natalizumab (8.72 ± 0.53 and 0.69 ± 0.12â g/L) compared to patients not on treatment. Conclusion: Cladribine therapy for RRMS was not associated with immunoglobulin subset deficiencies. This is contrasted to ocrelizumab and natalizumab which demonstrate significant reductions in both IgG and IgM levels.
RESUMO
Multiple sclerosis (MS) is an autoimmune, demyelinating disease with the highest incidence in women of childbearing age. The effect of pregnancy on disease activity and progression is a primary concern for women with MS and their clinical teams. It is well established that inflammatory disease activity is naturally suppressed during pregnancy, followed by an increase postpartum. However, the long-term effect of pregnancy on disease progression is less understood. Having had a pregnancy before MS onset has been associated with an older age at first demyelinating event, an average delay of 3.4 years. After MS onset, there is conflicting evidence about the impact of pregnancy on long-term outcomes. The study with the longest follow-up to date showed that pregnancy was associated with a 0.36-point lower disability score after 10-years of disease in 1830 women. Understanding the biological mechanism by which pregnancy induces long-term beneficial effects on MS outcomes could provide mechanistic insights into the elusive determinants of secondary progression. Here, we review potential biological processes underlying this effect, including evidence that acute sex hormone exposure induces lasting changes to neurobiological and DNA methylation patterns, and how sustained methylation changes in immune cells can alter immune composition and function long-term.
Assuntos
Doenças Autoimunes , Esclerose Múltipla , Gravidez , Humanos , Feminino , Esclerose Múltipla/genética , Incidência , Doenças Autoimunes/genética , Metilação de DNARESUMO
BACKGROUND: Pregnancy in women with multiple sclerosis (wwMS) is associated with a reduction of long-term disability progression. The mechanism that drives this effect is unknown, but converging evidence suggests a role for epigenetic mechanisms altering immune and/or central nervous system function. In this study, we aimed to identify whole blood and immune cell-specific DNA methylation patterns associated with parity in relapse-onset MS. RESULTS: We investigated the association between whole blood and immune cell-type-specific genome-wide methylation patterns and parity in 192 women with relapse-onset MS, matched for age and disease severity. The median time from last pregnancy to blood collection was 16.7 years (range = 1.5-44.4 years). We identified 2965 differentially methylated positions in whole blood, 68.5% of which were hypermethylated in parous women; together with two differentially methylated regions on Chromosomes 17 and 19 which mapped to TMC8 and ZNF577, respectively. Our findings validated 22 DMPs and 366 differentially methylated genes from existing literature on epigenetic changes associated with parity in wwMS. Differentially methylated genes in whole blood were enriched in neuronal structure and growth-related pathways. Immune cell-type-specific analysis using cell-type proportion estimates from statistical deconvolution of whole blood revealed further differential methylation in T cells specifically (four in CD4+ and eight in CD8+ T cells). We further identified reduced methylation age acceleration in parous women, demonstrating slower biological aging compared to nulligravida women. CONCLUSION: Differential methylation at genes related to neural plasticity offers a potential molecular mechanism driving the long-term effect of pregnancy on MS outcomes. Our results point to a potential 'CNS signature' of methylation in peripheral immune cells, as previously described in relation to MS progression, induced by parity. As the first epigenome-wide association study of parity in wwMS reported, validation studies are needed to confirm our findings.
Assuntos
Metilação de DNA , Esclerose Múltipla , Gravidez , Humanos , Feminino , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Paridade , Linfócitos T CD8-Positivos/metabolismo , Plasticidade Neuronal , Proteínas de Membrana/genéticaRESUMO
Introduction: Multiple Sclerosis (MS) has a complex pathophysiology that involves genetic and environmental factors. DNA methylation (DNAm) is one epigenetic mechanism that can reversibly modulate gene expression. Cell specific DNAm changes have been associated with MS, and some MS therapies such as dimethyl fumarate can influence DNAm. Interferon Beta (IFNß), was one of the first disease modifying therapies in multiple sclerosis (MS). However, how IFNß reduces disease burden in MS is not fully understood and little is known about the precise effect of IFNß treatment on methylation. Methods: The objective of this study was to determine the changes in DNAm associated with INFß use, using methylation arrays and statistical deconvolutions on two separate datasets (total ntreated = 64, nuntreated = 285). Results: We show that IFNß treatment in people with MS modifies the methylation profile of interferon response genes in a strong, targeted, and reproducible manner. Using these identified methylation differences, we constructed a methylation treatment score (MTS) that is an accurate discriminator between untreated and treated patients (Area under the curve = 0.83). This MTS is time-sensitive and in consistent with previously identified IFNß treatment therapeutic lag. This suggests that methylation changes are required for treatment efficacy. Overrepresentation analysis found that IFNß treatment recruits the endogenous anti-viral molecular machinery. Finally, statistical deconvolution revealed that dendritic cells and regulatory CD4+ T cells were most affected by IFNß induced methylation changes. Discussion: In conclusion, our study shows that IFNß treatment is a potent and targeted epigenetic modifier in multiple sclerosis.
Assuntos
Interferon beta , Esclerose Múltipla , Humanos , Interferon beta/farmacologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Esclerose Múltipla/induzido quimicamente , Resultado do TratamentoRESUMO
Background: Many diets promoted specifically for multiple sclerosis have been suggested to improve disease activity. Dairy and gluten are two components for which the recommendations vary between these diets. Existing research into the association between these dietary components and disease activity has been conflicting. Objective: To explore the relationship between dairy and gluten intake and disease activity in multiple sclerosis over a 2-year period, using no evidence of disease activity (NEDA) 3 status. Methods: 186 participants' dairy and gluten intake was retrospectively estimated over 2 years using a dairy and gluten dietary screener. Estimated dairy and gluten intake was compared to disease activity, indicated by no evidence of disease activity 3 status, and quality of life, assessed by the Multiple Sclerosis International Quality of Life (MusiQoL) questionnaire. Results: No significant association was found between mean estimated dairy or gluten intake and NEDA 3 status (p = 0.15 and 0.60, respectively). Furthermore, there was no significant relationship between dairy or gluten intake and MusiQoL) scores (p = 0.11 and 0.51, respectively). Conclusion: Whilst we cannot rule out modest benefits due to our small sample size, we found that neither dairy nor gluten intake was associated with disease activity or quality of life in this study.
RESUMO
BACKGROUND AND OBJECTIVES: In multiple sclerosis (MS), accelerated aging of the immune system (immunosenescence) may be associated with disease onset or drive progression. DNA methylation (DNAm) is an epigenetic factor that varies among lymphocyte subtypes, and cell-specific DNAm is associated with MS. DNAm varies across the life span and can be used to accurately estimate biological age acceleration, which has been linked to a range of morbidities. The objective of this study was to test for cell-specific epigenetic age acceleration (EAA) in people with MS. METHODS: This was a case-control study of EAA using existing DNAm data from several independent previously published studies. Data were included if .idat files from Illumina 450K or EPIC arrays were available for both a case with MS and an age-matched and sex-matched control, from the same study. Multifactor statistical modeling was performed to assess the primary outcome of EAA. We explored the relationship of EAA and MS, including interaction terms to identify immune cell-specific effects. Cell-sorted DNA methylation data from 3 independent datasets were used to validate findings. RESULTS: We used whole blood DNA methylation data from 583 cases with MS and 643 non-MS controls to calculate EAA using the GrimAge algorithm. The MS group exhibited an increased EAA compared with controls (approximately 9 mths, 95% CI 3.6-14.4), p = 0.001). Statistical deconvolution showed that EAA is associated with MS in a B cell-dependent manner (ß int = 1.7, 95% CI 0.3-2.8), p = 0.002), irrespective of B-cell proportions. Validation analysis using 3 independent datasets enriched for B cells showed an EAA increase of 5.1 years in cases with MS compared with that in controls (95% CI 2.8-7.4, p = 5.5 × 10-5). By comparison, there was no EAA difference in MS in a T cell-enriched dataset. We found that EAA was attributed to the DNAm surrogates for Beta-2-microglobulin (difference = 47,546, 95% CI 10,067-85,026; p = 7.2 × 10-5), and smoking pack-years (difference = 8.1, 95% CI 1.9-14.2, p = 0.002). DISCUSSION: This study provides compelling evidence that B cells exhibit marked EAA in MS and supports the hypothesis that premature B-cell immune senescence plays a role in MS. Future MS studies should focus on age-related molecular mechanisms in B cells.
Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/genética , Estudos de Casos e Controles , Envelhecimento/genética , Epigênese Genética , Metilação de DNARESUMO
BACKGROUND: Cognitive impairment is a common symptom of multiple sclerosis (MS). The effect of cognitive impairment in people with MS on employment, quality of life and mental health is known, however, few studies have investigated if cognitive deficits contribute to the economic burden of MS. OBJECTIVE: To investigate if cognitive impairment correlates with the economic burden of MS. METHODS: The client service receipt inventory was used to determine cost to the healthcare system, participant out of pocket cost, community cost and total societal cost. Quality of life was evaluated using the EuroQoL. Participants cognitive performance was assessed with the Audio Recorded Cognitive Screen and the symbol digit modalities test. Spearman's rank correlation coefficient (r) was used to gauge the strength of the correlation between domain scores and cost metrics. RESULTS: Memory, speed of writing and the symbol digit modalities test were all negatively correlated with all aspects of cost of care (r = 0.24-0.59, P < 0.5). This was found to be independent of other factors, such as EDSS or mental health indices. CONCLUSION: Cognitive deficits are independently correlated with the economic burden of MS and should be monitored as part of routine care.
Assuntos
Disfunção Cognitiva , Esclerose Múltipla , Cognição , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Estresse Financeiro , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/psicologia , Testes Neuropsicológicos , Qualidade de VidaRESUMO
BACKGROUND: The variation in multiple sclerosis (MS) disease severity is incompletely explained by genetics, suggesting genetic and environmental interactions are involved. Moreover, the lack of prognostic biomarkers makes it difficult for clinicians to optimise care. DNA methylation is one epigenetic mechanism by which gene-environment interactions can be assessed. Here, we aimed to identify DNA methylation patterns associated with mild and severe relapse-onset MS (RMS) and to test the utility of methylation as a predictive biomarker. METHODS: We conducted an epigenome-wide association study between 235 females with mild (n = 119) or severe (n = 116) with RMS. Methylation was measured with the Illumina methylationEPIC array and analysed using logistic regression. To generate hypotheses about the functional consequence of differential methylation, we conducted gene set enrichment analysis using ToppGene. We compared the accuracy of three machine learning models in classifying disease severity: (1) clinical data available at baseline (age at onset and first symptoms) built using elastic net (EN) regression, (2) methylation data using EN regression and (3) a weighted methylation risk score of differentially methylated positions (DMPs) from the main analysis using logistic regression. We used a conservative 70:30 test:train split for classification modelling. A false discovery rate threshold of 0.05 was used to assess statistical significance. RESULTS: Females with mild or severe RMS had 1472 DMPs in whole blood (839 hypermethylated, 633 hypomethylated in the severe group). Differential methylation was enriched in genes related to neuronal cellular compartments and processes, and B-cell receptor signalling. Whole-blood methylation levels at 1708 correlated CpG sites classified disease severity more accurately (machine learning model 2, AUC = 0.91) than clinical data (model 1, AUC = 0.74) or the wMRS (model 3, AUC = 0.77). Of the 1708 selected CpGs, 100 overlapped with DMPs from the main analysis at the gene level. These overlapping genes were enriched in neuron projection and dendrite extension, lending support to our finding that neuronal processes, rather than immune processes, are implicated in disease severity. CONCLUSION: RMS disease severity is associated with whole-blood methylation at genes related to neuronal structure and function. Moreover, correlated whole-blood methylation patterns can assign disease severity in females with RMS more accurately than clinical data available at diagnosis.
Assuntos
Metilação de DNA , Esclerose Múltipla , Feminino , Humanos , Esclerose Múltipla/genética , Epigênese Genética , Epigenoma , Gravidade do Paciente , Ilhas de CpGRESUMO
BACKGROUND: Cladribine tablets (marketed as Mavenclad) are a new oral therapy, which has recently been listed on the pharmaceutical benefits scheme in Australia for the treatment of relapsing multiple sclerosis (MS). The current dosing schedule is for 2 courses given a year apart, which has been shown to be effective for treatment of MS for up to 4 years in 75% of patients (based on annualized relapse rate). However, the reinitiation of therapy after year 4 has not been studied. OBJECTIVE: This study aims to evaluate the safety and efficacy of cladribine tablets over a 6-year period, according to no evidence of disease activity 3. METHODS: This will be a multicenter, 6-year, phase IV, low interventional, observational study that incorporates clinical, hematological, biochemical, epigenetic, radiological and cognitive biomarkers of disease. Participants considered for treatment with cladribine as part of their routine clinical care will be consented to take part in the study. They will be monitored at regular intervals during the initial course of medication administration in years 1 and 2. After year 3, patients will have the option of redosing, if clinically indicated, or to switch to another disease-modifying therapy. Throughout the duration of the study, we will assess blood-based biomarkers including lymphocyte subsets, serum neurofilament light chain, DNA methylation, and RNA analysis as well as magnetic resonance imaging findings (brain volume and/or lesion load) and cognitive performance. RESULTS: This study has been approved by the Hunter New England Local Health District Human Research Ethics Committee. Recruitment began in March of 2019 and was completed by June 2021. CONCLUSIONS: This will be the first long-term efficacy trial of cladribine, which offers reinitiation of therapy in the 3rd year, based on disease activity, after the initial 2 courses. We expect that this study will indicate whether any of the assessed biomarkers can be used to predict treatment efficacy or the need for future reinitiation of cladribine in people with MS. TRIAL REGISTRATION: This study is registered with the Australian and New Zealand Clinical Trials Registry (ACTRN12619000257167) with Universal Trial Number (U1111-1228-2165). INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/24969.
RESUMO
BACKGROUND: Multiple sclerosis is a neurodegenerative, autoimmune disease of the central nervous system. Both peripheral blood and central nervous system facets play a role in the pathophysiology. Extracellular vesicles are small membrane-bound vesicles that are released by most cells in response to stress, activation, or pathology. As extracellular vesicles can cross the blood-brain barrier, they have the ability to link peripheral blood inflammation to central nervous system pathology in multiple sclerosis. The aim of this study was to obtain a comprehensive picture of the cellular origins of plasma-borne extracellular particles in multiple sclerosis. METHODS: Platelet-free plasma was obtained from 39 multiple sclerosis patients and 27 healthy controls via a series of centrifugation steps and assessed by flow cytometry. Plasma samples were stained with antibodies against CD4, CD8, CD14, CD20, CD41b, CD45, CD146, and CD235a. Gates were set using size-reference beads and extracellular particles were enumerated using commercial counting beads at known concentrations. RESULTS: In relapsing patients (n = 13) erythrocyte-derived (CD235a) extracellular particles were increased, while platelet-derived (CD41b), leukocyte-derived (CD45), and CD4+T cell-derived (CD4) extracellular particles were decreased compared to both healthy controls (n = 27) (p<0.05) and secondary progressive multiple sclerosis patients (n = 9) (p < 0.05). Endothelium-derived extracellular particles (CD146) were increased in stable relapsing-remitting multiple sclerosis patients (n = 17) compared to healthy controls (p < 0.05). Extracellular particles from several different cells of origin correlated with each other and clinical parameters (e.g. disease duration, number of relapses, EDSS), though clinical correlations did not withstand corrections for multiple comparisons. CONCLUSIONS: Concentrations of erythrocyte-, leukocyte-, and platelet-derived extracellular particles were altered in relapsing multiple sclerosis patients and endothelium-derived extracellular particles were increased in stable relapsing-remitting patients compared to healthy controls. Extracellular particles may provide insights into altered the crosstalk between peripheral blood cells in multiple sclerosis, which may lead to the discovery of novel therapeutic targets.
Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Progressão da Doença , Humanos , RecidivaRESUMO
BACKGROUND: Multiple sclerosis is a demyelinating autoimmune disease, for which there is no blood-borne biomarker. Erythrocytes may provide a source of such biomarkers as they contain microRNAs. MicroRNAs regulate protein translation through complementary binding to messenger RNA. As erythrocytes are transcriptionally inactive, their microRNA profiles may be less susceptible to variation. The aim of this study was to assess the biomarker potential of erythrocyte microRNAs for multiple sclerosis and assess the potential contribution of erythrocyte-derived extracellular vesicle microRNAs to pathology. METHODS: Erythrocytes were isolated from whole blood by density gradient centrifugation. Erythrocyte microRNAs of a discovery cohort (23 multiple sclerosis patients and 22 healthy controls) were sequenced. Increased expression of miR-183 cluster microRNAs (hsa-miR-96-5p, hsa-miR-182-5p and hsa-miR-183-5p) was validated in an independent cohort of 42 patients and 45 healthy and pathological (migraine) controls. Erythrocyte-derived extracellular vesicles were created ex vivo and their microRNAs were sequenced. Targets of microRNAs were predicted using miRDIP. RESULTS: Hsa-miR-182-5p and hsa-miR-183-5p were able to discriminate relapsing multiple sclerosis patients from migraine patients and/or healthy controls with 89-94% accuracy and around 90% specificity. Hsa-miR-182-5p and hsa-miR-183-5p expression correlated with measures of physical disability and hsa-miR-96-5p expression correlated with measures of cognitive disability in multiple sclerosis. Erythrocytes were found to selectively package microRNAs into extracellular vesicles and 34 microRNAs were found to be differentially packaged between healthy controls and multiple sclerosis patients. Several gene targets of differentially expressed and packaged erythrocyte microRNAs overlapped with multiple sclerosis susceptibility genes. Gene enrichment analysis indicated involvement in nervous system development and histone H3-K27 demethylation. CONCLUSIONS: Erythrocyte miR-183 cluster members may be developed into specific multiple sclerosis biomarkers that could assist with diagnosis and disability monitoring. Erythrocyte and their extracellular microRNAs were shown to target multiple sclerosis susceptibility genes and may be contributing to the pathophysiology via previously identified routes.
RESUMO
BACKGROUND: Cognitive impairment is common in multiple sclerosis (MS) but not adequately monitored by Expanded Disability Status Scale assessment. The Audio Recorded Cognitive Screen (ARCS) and Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) are easy-to-use tools to assess cognitive function in clinical practice. OBJECTIVE: To compare the sensitivity of ARCS to BICAMS and their relative predictive value for employment status. METHODS: MS patients and healthy controls were assessed using the ARCS and the BICAMS consecutively. Receiver Operating Characteristic (ROC) curve analyses were used to compare the two tests. A step-wise, logistic regression analysis was used to identify the cognitive test(s) that best predicted employment status and quality of life. RESULTS: Total ARCS, memory and attention domain scores were moderately correlated with all BICAMS tests (râ¯=â¯0.3-0.5; Pâ¯≤â¯0.05). Total ARCS predicts cognitive impairment with good sensitivity and specificity relative to the BICAMS tests (AUC = 0.8; Pâ¯=â¯0.00045). Total ARCS detects higher levels of impairment than BICAMS in MS patients (44% versus 21%). The memory domain of the ARCS and the BVMT-R were the best predictors of employment status (OR = 1.12 and 1.14, P < 0.05). CONCLUSION: BICAMS and ARCS have comparable sensitivity for cognitive impairment in MS. Memory assessment from either tests is the best predictor of employment status; however, the BICAMS is a better predictor of work productivity.
Assuntos
Disfunção Cognitiva/diagnóstico , Eficiência , Emprego , Esclerose Múltipla/diagnóstico , Testes Neuropsicológicos/normas , Adulto , Disfunção Cognitiva/etiologia , Feminino , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Rememoração Mental/fisiologia , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Reconhecimento Psicológico/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
The pathology of progressive multiple sclerosis (MS) is poorly understood. We have previously assessed DNA methylation in the CD4+ T cells of relapsing-remitting (RR) MS patients compared to healthy controls and identified differentially methylated regions (DMRs) in HLA-DRB1 and RNF39. This study aimed to investigate the DNA methylation profiles of the CD4+ T cells of progressive MS patients. DNA methylation was measured in two separate case/control cohorts using the Illumina 450K/EPIC arrays and data was analysed with the Chip Analysis Methylation Pipeline (ChAMP). Single nucleotide polymorphisms (SNPs) were assessed using the Illumina Human OmniExpress24 arrays and analysed using PLINK. Expression was assessed using the Illumina HT12 array and analysed in R using a combination of Limma and Illuminaio. We identified three DMRs at HTR2A, SLC17A9 and HDAC4 that were consistent across both cohorts. The DMR at HTR2A is located within the bounds of a haplotype block; however, the DMR remained significant after accounting for SNPs in the region. No expression changes were detected in any DMRs. HTR2A is differentially methylated in progressive MS independent of genotype. This differential methylation is not evident in RRMS, making it a potential biomarker of progressive disease.