Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Retrovirology ; 21(1): 10, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778414

RESUMO

BACKGROUND: Detection of viruses by host pattern recognition receptors induces the expression of type I interferon (IFN) and IFN-stimulated genes (ISGs), which suppress viral replication. Numerous studies have described HIV-1 as a poor activator of innate immunity in vitro. The exact role that the viral capsid plays in this immune evasion is not fully understood. RESULTS: To better understand the role of the HIV-1 capsid in sensing we tested the effect of making HIV-1 by co-expressing a truncated Gag that encodes the first 107 amino acids of capsid fused with luciferase or GFP, alongside wild type Gag-pol. We found that unlike wild type HIV-1, viral particles produced with a mixture of wild type and truncated Gag fused to luciferase or GFP induced a potent IFN response in THP-1 cells and macrophages. Innate immune activation by Gag-fusion HIV-1 was dependent on reverse transcription and DNA sensor cGAS, suggesting activation of an IFN response by viral DNA. Further investigation revealed incorporation of the Gag-luciferase/GFP fusion proteins into viral particles that correlated with subtle defects in wild type Gag cleavage and a diminished capacity to saturate restriction factor TRIM5α, likely due to aberrant particle formation. We propose that expression of the Gag fusion protein disturbs the correct cleavage and maturation of wild type Gag, yielding viral particles that are unable to effectively shield viral DNA from detection by innate sensors including cGAS. CONCLUSIONS: These data highlight the crucial role of capsid in innate evasion and support growing literature that disruption of Gag cleavage and capsid formation induces a viral DNA- and cGAS-dependent innate immune response. Together these data demonstrate a protective role for capsid and suggest that antiviral activity of capsid-targeting antivirals may benefit from enhanced innate and adaptive immunity in vivo.


Assuntos
HIV-1 , Imunidade Inata , Nucleotidiltransferases , Produtos do Gene gag do Vírus da Imunodeficiência Humana , HIV-1/imunologia , HIV-1/genética , HIV-1/fisiologia , Humanos , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fatores de Restrição Antivirais , Macrófagos/imunologia , Macrófagos/virologia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células THP-1 , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/imunologia , Evasão da Resposta Imune , Capsídeo/metabolismo , Capsídeo/imunologia , Replicação Viral , Vírion/metabolismo , Vírion/genética , Vírion/imunologia , Interações Hospedeiro-Patógeno/imunologia , DNA Viral/genética , Linhagem Celular
2.
Retrovirology ; 19(1): 2, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073912

RESUMO

BACKGROUND: The NF-κB family of transcription factors and associated signalling pathways are abundant and ubiquitous in human immune responses. Activation of NF-κB transcription factors by viral pathogen-associated molecular patterns, such as viral RNA and DNA, is fundamental to anti-viral innate immune defences and pro-inflammatory cytokine production that steers adaptive immune responses. Diverse non-viral stimuli, such as lipopolysaccharide and cytokines, also activate NF-κB and the same anti-pathogen gene networks. Viruses adapted to human cells often encode multiple proteins targeting the NF-κB pathway to mitigate the anti-viral effects of NF-κB-dependent host immunity. RESULTS: In this study we have demonstrated using a variety of assays, in a number of different cell types including primary cells, that plasmid-encoded or virus-delivered simian immunodeficiency virus (SIV) accessory protein Vpx is a broad antagonist of NF-κB signalling active against diverse innate NF-κB agonists. Using targeted Vpx mutagenesis, we showed that this novel Vpx phenotype is independent of known Vpx cofactor DCAF1 and other cellular binding partners, including SAMHD1, STING and the HUSH complex. We found that Vpx co-immunoprecipitated with canonical NF-κB transcription factor p65, but not NF-κB family members p50 or p100, preventing nuclear translocation of p65. We found that broad antagonism of NF-κB activation by Vpx was conserved across distantly related lentiviruses as well as for Vpr from SIV Mona monkey (SIVmon), which has Vpx-like SAMHD1-degradation activity. CONCLUSIONS: We have discovered a novel mechanism by which lentiviruses antagonise NF-κB activation by targeting p65. These findings extend our knowledge of how lentiviruses manipulate universal regulators of immunity to avoid the anti-viral sequelae of pro-inflammatory gene expression stimulated by both viral and extra-viral agonists. Importantly our findings are also relevant to the gene therapy field where virus-like particle associated Vpx is routinely used to enhance vector transduction through antagonism of SAMHD1, and perhaps also through manipulation of NF-κB.


Assuntos
HIV-2 , Vírus da Imunodeficiência Símia , Animais , HIV-2/genética , NF-kappa B/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Vírus da Imunodeficiência Símia/genética , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
3.
J Gen Virol ; 103(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35584007

RESUMO

Modified vaccinia Ankara (MVA) is an attenuated strain of vaccinia virus (VACV), a dsDNA virus that replicates its genome in the cytoplasm and as a result is canonically sensed by the cyclic GMP-AMP synthase (cGAS) and its downstream stimulator of interferon genes (STING). MVA has a highly restricted host range due to major deletions in its genome including inactivation of immunomodulatory genes, only being able to grow in avian cells and the hamster cell line BHK21. Here we studied the interplay between MVA and the cGAS/STING DNA in this permissive cell line and determined whether manipulation of this axis could impact MVA replication and cell responses. We demonstrate that BHK21 cells retain a functional cGAS/STING axis that responds to canonical DNA sensing agonists, upregulating interferon stimulated genes (ISGs). BHK21 cells also respond to MVA, but with a distinct ISG profile. This profile remains unaltered after CRISPR/Cas9 knock-out editing of STING and ablation of cytosolic DNA responses, indicating that MVA responses are independent of the cGAS/STING axis. Furthermore, infection by MVA diminishes the ability of BHK21 cells to respond to exogenous DNA suggesting that MVA still encodes uncharacterised inhibitors of DNA sensing. This suggests that using attenuated strains in permissive cell lines may assist in identification of novel host-virus interactions that may be of relevance to disease or the therapeutic applications of poxviruses.


Assuntos
Proteínas de Membrana , Vaccinia virus , DNA , Imunidade Inata/genética , Interferons , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Vaccinia virus/genética , Vaccinia virus/metabolismo
4.
J Virol ; 95(19): e0101221, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34260287

RESUMO

Vaccinia virus produces two types of virions known as single-membraned intracellular mature virus (MV) and double-membraned extracellular enveloped virus (EV). EV production peaks earlier when initial MVs are further wrapped and secreted to spread infection within the host. However, late during infection, MVs accumulate intracellularly and become important for host-to-host transmission. The process that regulates this switch remains elusive and is thought to be influenced by host factors. Here, we examined the hypothesis that EV and MV production are regulated by the virus through expression of F13 and the MV-specific protein A26. By switching the promoters and altering the expression kinetics of F13 and A26, we demonstrate that A26 expression downregulates EV production and plaque size, thus limiting viral spread. This process correlates with A26 association with the MV surface protein A27 and exclusion of F13, thus reducing EV titers. Thus, MV maturation is controlled by the abundance of the viral A26 protein, independently of other factors, and is rate limiting for EV production. The A26 gene is conserved within vertebrate poxviruses but is strikingly lost in poxviruses known to be transmitted exclusively by biting arthropods. A26-mediated virus maturation thus has the appearance to be an ancient evolutionary adaptation to enhance transmission of poxviruses that has subsequently been lost from vector-adapted species, for which it may serve as a genetic signature. The existence of virus-regulated mechanisms to produce virions adapted to fulfill different functions represents a novel level of complexity in mammalian viruses with major impacts on evolution, adaptation, and transmission. IMPORTANCE Chordopoxviruses are mammalian viruses that uniquely produce a first type of virion adapted to spread within the host and a second type that enhances transmission between hosts, which can take place by multiple ways, including direct contact, respiratory droplets, oral/fecal routes, or via vectors. Both virion types are important to balance intrahost dissemination and interhost transmission, so virus maturation pathways must be tightly controlled. Here, we provide evidence that the abundance and kinetics of expression of the viral protein A26 regulates this process by preventing formation of the first form and shifting maturation toward the second form. A26 is expressed late after the initial wave of progeny virions is produced, so sufficient viral dissemination is ensured, and A26 provides virions with enhanced environmental stability. Conservation of A26 in all vertebrate poxviruses, but not in those transmitted exclusively via biting arthropods, reveals the importance of A26-controlled virus maturation for transmission routes involving environmental exposure.


Assuntos
Regiões Promotoras Genéticas , Vaccinia virus/fisiologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Chordopoxvirinae/genética , Chordopoxvirinae/metabolismo , Engenharia Genética , Humanos , Orthopoxvirus/genética , Orthopoxvirus/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Vaccinia virus/genética , Ensaio de Placa Viral , Proteínas Virais/genética
5.
J Virol ; 93(10)2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30814284

RESUMO

Viral infection of cells is sensed by pathogen recognition receptors that trigger an antiviral innate immune response, and consequently viruses have evolved countermeasures. Vaccinia virus (VACV) evades the host immune response by expressing scores of immunomodulatory proteins. One family of VACV proteins are the BTB-BACK (broad-complex, tram-trac, and bric-a-brac [BTB] and C-terminal Kelch [BACK]) domain-containing, Kelch-like (BBK) family of predicted cullin-3 E3 ligase adaptors: A55, C2, and F3. Previous studies demonstrated that gene A55R encodes a protein that is nonessential for VACV replication yet affects viral virulence in vivo Here, we report that A55 is an NF-κB inhibitor acting downstream of IκBα degradation, preventing gene transcription and cytokine secretion in response to cytokine stimulation. A55 targets the host importin α1 (KPNA2), acting to reduce p65 binding and its nuclear translocation. Interestingly, while A55 was confirmed to coprecipitate with cullin-3 in a BTB-dependent manner, its NF-κB inhibitory activity mapped to the Kelch domain, which alone is sufficient to coprecipitate with KPNA2 and inhibit NF-κB signaling. Intradermal infection of mice with a virus lacking A55R (vΔA55) increased VACV-specific CD8+ T-cell proliferation, activation, and cytotoxicity in comparison to levels of the wild-type (WT) virus. Furthermore, immunization with vΔA55 induced increased protection to intranasal VACV challenge compared to the level with control viruses. In summary, this report describes the first target of a poxvirus-encoded BBK protein and a novel mechanism for DNA virus immune evasion, resulting in increased CD8+ T-cell memory and a more immunogenic vaccine.IMPORTANCE NF-κB is a critical transcription factor in the innate immune response to infection and in shaping adaptive immunity. The identification of host and virus proteins that modulate the induction of immunological memory is important for improving virus-based vaccine design and efficacy. In viruses, the expression of BTB-BACK Kelch-like (BBK) proteins is restricted to poxviruses and conserved within them, indicating the importance of these proteins for these medically important viruses. Using vaccinia virus (VACV), the smallpox vaccine, we report that the VACV BBK protein A55 dysregulates NF-κB signaling by disrupting the p65-importin interaction, thus preventing NF-κB translocation and blocking NF-κB-dependent gene transcription. Infection with VACV lacking A55 induces increased VACV-specific CD8+ T-cell memory and better protection against VACV challenge. Studying viral immunomodulators therefore expands not only our understanding of viral pathogenesis and immune evasion strategies but also of the immune signaling cascades controlling antiviral immunity and the development of immune memory.


Assuntos
Evasão da Resposta Imune/fisiologia , NF-kappa B/antagonistas & inibidores , Vaccinia virus/metabolismo , Animais , Domínio BTB-POZ , Linhagem Celular , Proteínas Culina/metabolismo , Feminino , Células HEK293 , Humanos , Imunidade Inata , Carioferinas/metabolismo , Repetição Kelch/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Poxviridae/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Vacínia/virologia , Proteínas Virais/metabolismo , Virulência , Replicação Viral/fisiologia , alfa Carioferinas/metabolismo
6.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29491158

RESUMO

Cytosolic recognition of DNA has emerged as a critical cellular mechanism of host immune activation upon pathogen invasion. The central cytosolic DNA sensor cGAS activates STING, which is phosphorylated, dimerizes and translocates from the endoplasmic reticulum (ER) to a perinuclear region to mediate IRF-3 activation. Poxviruses are double-stranded DNA viruses replicating in the cytosol and hence likely to trigger cytosolic DNA sensing. Here, we investigated the activation of innate immune signaling by 4 different strains of the prototypic poxvirus vaccinia virus (VACV) in a cell line proficient in DNA sensing. Infection with the attenuated VACV strain MVA activated IRF-3 via cGAS and STING, and accordingly STING dimerized and was phosphorylated during MVA infection. Conversely, VACV strains Copenhagen and Western Reserve inhibited STING dimerization and phosphorylation during infection and in response to transfected DNA and cyclic GMP-AMP, thus efficiently suppressing DNA sensing and IRF-3 activation. A VACV deletion mutant lacking protein C16, thought to be the only viral DNA sensing inhibitor acting upstream of STING, retained the ability to block STING activation. Similar inhibition of DNA-induced STING activation was also observed for cowpox and ectromelia viruses. Our data demonstrate that virulent poxviruses possess mechanisms for targeting DNA sensing at the level of the cGAS-STING axis and that these mechanisms do not operate in replication-defective strains such as MVA. These findings shed light on the role of cellular DNA sensing in poxvirus-host interactions and will open new avenues to determine its impact on VACV immunogenicity and virulence.IMPORTANCE Poxviruses are double-stranded DNA viruses infecting a wide range of vertebrates and include the causative agent of smallpox (variola virus) and its vaccine vaccinia virus (VACV). Despite smallpox eradication VACV remains of interest as a therapeutic. Attenuated strains are popular vaccine candidates, whereas replication-competent strains are emerging as efficient oncolytics in virotherapy. The successful therapeutic use of VACV depends on a detailed understanding of its ability to modulate host innate immune responses. DNA sensing is a critical cellular mechanism for pathogen detection and activation of innate immunity that is centrally coordinated by the endoplasmic reticulum-resident protein STING. Here, STING is shown to mediate immune activation in response to MVA, but not in response to virulent VACV strains or other virulent poxviruses, which prevent STING activation and DNA sensing during infection and after DNA transfection. These results provide new insights into poxvirus immune evasion and have implications in the rational design of VACV-based therapeutics.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Infecções por Poxviridae/metabolismo , Poxviridae/fisiologia , Linhagem Celular , Citosol/metabolismo , Citosol/virologia , Células HEK293 , Humanos , Fosforilação , Poxviridae/patogenicidade , Infecções por Poxviridae/virologia , Multimerização Proteica , Células THP-1 , Virulência , Replicação Viral
7.
J Virol ; 92(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30258003

RESUMO

Ankyrin repeat (ANK) domains are among the most abundant motifs in eukaryotic proteins. ANK proteins are rare amongst viruses, with the exception of poxviruses, which presumably acquired them from the host via horizontal gene transfer. The architecture of poxvirus ANK proteins is, however, different from that of their cellular counterparts, and this precludes a direct acquisition event. Here we combine bioinformatics analysis and quantitative proteomics to discover a new class of viral ANK proteins with a domain organization that relates to cellular ANK proteins. These noncanonical viral ANK proteins, termed ANK/BC, interact with host Cullin-2 via a C-terminal BC box resembling that of cellular Cullin-2 substrate adaptors such as the von Hippel-Lindau protein. Mutagenesis of the BC box-like sequence abrogates binding to Cullin-2, whereas fusion of this motif to an ANK-only protein confers Cullin-2 association. We demonstrated that these viral ANK/BC proteins are potent immunomodulatory proteins suppressing the activation of the proinflammatory transcription factors NF-κB and interferon (IFN)-responsive factor 3 (IRF-3) and the production of cytokines and chemokines, including interferon, and that association with Cullin-2 is required for optimal inhibitory activity. ANK/BC proteins exist in several orthopoxviruses and cluster into 2 closely related orthologue groups in a phylogenetic lineage that is separate from that of canonical ANK/F-box proteins. Given the existence of cellular proteins with similar architecture, viral ANK/BC proteins may be closely related to the original ANK gene acquired by an ancestral orthopoxvirus. These findings uncover a novel viral strategy to antagonize innate immunity and shed light on the origin of the poxviral ANK protein family.IMPORTANCE Viruses encode multiple proteins aimed at modulating cellular homeostasis and antagonizing the host antiviral response. Most of these genes were originally acquired from the host and subsequently adapted to benefit the virus. ANK proteins are common in eukaryotes but are unusual amongst viruses, with the exception of poxviruses, where they represent one of the largest protein families. We report here the existence of a new class of viral ANK proteins, termed ANK/BC, that provide new insights into the origin of poxvirus ANK proteins. ANK/BC proteins target the host E3 ubiquitin ligase Cullin-2 via a C-terminal BC box domain and are potent suppressors of the production of inflammatory cytokines, including interferon. The existence of cellular ANK proteins whose architecture is similar suggests the acquisition of a host ANK/BC gene by an ancestral orthopoxvirus and its subsequent duplication and adaptation to widen the repertoire of immune evasion strategies.


Assuntos
Anquirinas/metabolismo , Proteínas Culina/metabolismo , Infecções por Poxviridae/metabolismo , Poxviridae/fisiologia , Proteoma/análise , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Imunidade Inata , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/virologia , Homologia de Sequência
9.
BMC Microbiol ; 18(1): 74, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005620

RESUMO

BACKGROUND: Bovine tuberculosis (bTB) caused by Mycobacterium bovis is the most serious endemic disease affecting livestock in the UK. The European badger (Meles meles) is the most important wildlife reservoir of bTB transmission to cattle, making eradication particularly difficult. In this respect, oral vaccination with the attenuated M. bovis vaccine Bacillus Calmette-Guerin (BCG) has been suggested as a wide-scale intervention to reduce bTB infection in badgers. However, experimental studies show variable protection. Among the possibilities for this variation is that the resident gut bacteria may influence the success of oral vaccination in badgers; either through competitive exclusion and/or inhibition, or via effects on the host immune system. In order to explore this possibility, we have tested whether typical gut commensals such as Lactic Acid Bacteria (LAB) have the capacity to impact on the viability and survival rate of BCG and to modulate the immune response to BCG using an in vitro model. RESULTS: Twelve LAB isolated from badger faeces displayed inhibitory activity to BCG that was species-dependent. Weissella had a bacteriostatic effect, whereas isolates of enterococci, lactobacilli and pediococci had a more bactericidal activity. Furthermore, BCG-induced activation of the pro-inflammatory transcription factor NF-κB in human THP-1 macrophages was modulated by LAB in a strain-dependent manner. Most pediococci enhanced NF-κB activation but one strain had the opposite effect. Interestingly, isolates of enterococci, lactobacilli and weissella had different effects as immunomodulators of BCG-induced macrophage responses as some had no significant influence on NF-κB activation, but others increased it significantly. CONCLUSIONS: Our in vitro results show that LAB isolated from badgers exhibit significant inhibitory activity against BCG and influence the immune activation mediated by BCG in a human macrophage assay. These findings suggest that gut commensal bacteria could play a role in influencing the outcome of oral BCG vaccination. Inactivated cells of LAB, or LAB that are bacteriostatic but have a synergistic immunostimulatory effect with BCG, could be potential adjuvants to be used for oral vaccination in badgers. Further work is needed to take into account the complex nature of the gut microbiome, specific immunity of the badger and the in vivo context.


Assuntos
Antituberculosos/farmacologia , Vacina BCG/imunologia , Imunomodulação/efeitos dos fármacos , Lactobacillales/fisiologia , Macrófagos/imunologia , Mustelidae/microbiologia , Animais , Fezes/microbiologia , Microbioma Gastrointestinal , Humanos , Lactobacillales/classificação , Macrófagos/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , NF-kappa B/metabolismo , Especificidade da Espécie , Células THP-1
10.
J Gen Virol ; 98(12): 3086-3092, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29058646

RESUMO

Vaccinia virus (VACV) encodes multiple proteins inhibiting the NF-κB signalling pathway. One of these, A49, targets the E3 ubiquitin ligase ß-TrCP, which is responsible for the ubiquitylation and consequential proteosomal degradation of IκBα and the release of the NF-κB heterodimer. ß-TrCP is a pleiotropic enzyme ubiquitylating multiple cellular substrates, including the transcriptional activator ß-catenin. Here we demonstrate that A49 can activate the Wnt signalling pathway, a critical pathway that is involved in cell cycle and cell differentiation, and is controlled by ß-catenin. The data presented show that the expression of A49 ectopically or during VACV infection causes accumulation of ß-catenin, and that A49 triggering of Wnt signalling is dependent on binding ß-TrCP. This is consistent with A49 blocking the ability of ß-TrCP to recognise ß-catenin and IκBα, and possibly other cellular targets. Thus, A49 targetting of ß-TrCP affects multiple cellular pathways, including the NF-κB and Wnt signalling cascades.

11.
J Biol Chem ; 290(10): 5991-6002, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25605733

RESUMO

Vaccinia virus (VACV) encodes several proteins that inhibit activation of the proinflammatory transcription factor nuclear factor κB (NF-κB). VACV protein A49 prevents translocation of NF-κB to the nucleus by sequestering cellular ß-TrCP, a protein required for the degradation of the inhibitor of κB. A49 does not share overall sequence similarity with any protein of known structure or function. We solved the crystal structure of A49 from VACV Western Reserve to 1.8 Å resolution and showed, surprisingly, that A49 has the same three-dimensional fold as Bcl-2 family proteins despite lacking identifiable sequence similarity. Whereas Bcl-2 family members characteristically modulate cellular apoptosis, A49 lacks a surface groove suitable for binding BH3 peptides and does not bind proapoptotic Bcl-2 family proteins Bax or Bak. The N-terminal 17 residues of A49 do not adopt a single well ordered conformation, consistent with their proposed role in binding ß-TrCP. Whereas pairs of A49 molecules interact symmetrically via a large hydrophobic surface in crystallo, A49 does not dimerize in solution or in cells, and we propose that this hydrophobic interaction surface may mediate binding to a yet undefined cellular partner. A49 represents the eleventh VACV Bcl-2 family protein and, despite these proteins sharing very low sequence identity, structure-based phylogenetic analysis shows that all poxvirus Bcl-2 proteins are structurally more similar to each other than they are to any cellular or herpesvirus Bcl-2 proteins. This is consistent with duplication and diversification of a single BCL2 family gene acquired by an ancestral poxvirus.


Assuntos
Imunidade Inata/genética , Filogenia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Virais/química , Apoptose/genética , Cristalografia por Raios X , Células HEK293 , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Conformação Proteica , Dobramento de Proteína , Vacínia/genética , Vacínia/virologia , Vaccinia virus/química , Vaccinia virus/genética , Vaccinia virus/patogenicidade , Proteínas Virais/genética
12.
Immunology ; 145(1): 34-49, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25382035

RESUMO

Factors influencing T-cell responses are important for vaccine development but are incompletely understood. Here, vaccinia virus (VACV) protein N1 is shown to impair the development of both effector and memory CD8(+) T cells and this correlates with its inhibition of nuclear factor-κB (NF-κB) activation. Infection with VACVs that either have the N1L gene deleted (vΔN1) or contain a I6E mutation (vN1.I6E) that abrogates its inhibition of NF-κB resulted in increased central and memory CD8(+) T-cell populations, increased CD8(+) T-cell cytotoxicity and lower virus titres after challenge. Furthermore, CD8(+) memory T-cell function was increased following infection with vN1.I6E, with more interferon-γ production and greater protection against VACV infection following passive transfer to naive mice, compared with CD8(+) T cells from mice infected with wild-type virus (vN1.WT). This demonstrates the importance of NF-κB activation within infected cells for long-term CD8(+) T-cell memory and vaccine efficacy. Further, it provides a rationale for deleting N1 from VACV vectors to enhance CD8(+) T-cell immunogenicity, while simultaneously reducing virulence to improve vaccine safety.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , NF-kappa B/antagonistas & inibidores , Vaccinia virus/imunologia , Vacínia/imunologia , Proteínas Virais/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Proliferação de Células , Feminino , Camundongos , Mutação de Sentido Incorreto , NF-kappa B/genética , NF-kappa B/imunologia , Vacínia/genética , Vacínia/patologia , Vaccinia virus/genética , Proteínas Virais/genética , Vacinas Virais/genética , Vacinas Virais/imunologia
13.
J Virol ; 88(6): 3092-102, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24371075

RESUMO

The transcription factor nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) plays a critical role in host defense against viral infection by inducing the production of proinflammatory mediators and type I interferon. Consequently, viruses have evolved many mechanisms to block its activation. The poxvirus vaccinia virus (VACV) encodes numerous inhibitors of NF-κB activation that target multiple points in the signaling pathway. A derivative of VACV strain Copenhagen, called vv811, lacking 55 open reading frames in the left and right terminal regions of the genome was reported to still inhibit NF-κB activation downstream of tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL-1ß), suggesting the presence of one or more additional inhibitors. In this study, we constructed a recombinant vv811 lacking the recently described NF-κB inhibitor A49 (vv811ΔA49), yielding a virus that lacked all currently described inhibitors downstream of TNF-α and IL-1ß. Unlike vv811, vv811ΔA49 no longer inhibited degradation of the phosphorylated inhibitor of κBα and p65 translocated into the nucleus. However, despite this translocation, vv811ΔA49 still inhibited TNF-α- and IL-1ß-induced NF-κB-dependent reporter gene expression and the transcription and production of cytokines induced by these agonists. This inhibition did not require late viral gene expression. These findings indicate the presence of another inhibitor of NF-κB that is expressed early during infection and acts by a novel mechanism downstream of p65 translocation into the nucleus.


Assuntos
NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Vaccinia virus/fisiologia , Vacínia/genética , Vacínia/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Interleucina-1/genética , Interleucina-1/metabolismo , NF-kappa B/genética , Transporte Proteico , Fator de Transcrição RelA/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Vacínia/virologia , Vaccinia virus/genética
14.
PLoS Pathog ; 9(2): e1003183, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23468625

RESUMO

The transcription factor NF-κB is essential for immune responses against pathogens and its activation requires the phosphorylation, ubiquitination and proteasomal degradation of IκBα. Here we describe an inhibitor of NF-κB from vaccinia virus that has a closely related counterpart in variola virus, the cause of smallpox, and mechanistic similarity with the HIV protein Vpu. Protein A49 blocks NF-κB activation by molecular mimicry and contains a motif conserved in IκBα which, in IκBα, is phosphorylated by IKKß causing ubiquitination and degradation. Like IκBα, A49 binds the E3 ligase ß-TrCP, thereby preventing ubiquitination and degradation of IκBα. Consequently, A49 stabilised phosphorylated IκBα (p-IκBα) and its interaction with p65, so preventing p65 nuclear translocation. Serine-to-alanine mutagenesis within the IκBα-like motif of A49 abolished ß-TrCP binding, stabilisation of p-IκBα and inhibition of NF-κB activation. Remarkably, despite encoding nine other inhibitors of NF-κB, a VACV lacking A49 showed reduced virulence in vivo.


Assuntos
Mimetismo Molecular , NF-kappa B/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Vaccinia virus/patogenicidade , Vírus da Varíola/patogenicidade , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Animais , Linhagem Celular , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Evasão da Resposta Imune , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Ligação Proteica , Ubiquitina-Proteína Ligases/genética , Vaccinia virus/genética , Vaccinia virus/imunologia , Vírus da Varíola/genética , Vírus da Varíola/imunologia , Virulência , Proteínas Contendo Repetições de beta-Transducina/genética
15.
J Biol Chem ; 288(18): 13057-67, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23508950

RESUMO

Golgi anti-apoptotic proteins (GAAPs) are hydrophobic proteins resident in membranes of the Golgi complex. They protect cells from a range of apoptotic stimuli, reduce the Ca(2+) content of intracellular stores, and regulate Ca(2+) fluxes. GAAP was discovered in camelpox virus, but it is highly conserved throughout evolution and encoded by all eukaryote genomes examined. GAAPs are part of the transmembrane Bax inhibitor-containing motif (TMBIM) family that also includes other anti-apoptotic and Ca(2+)-modulating membrane proteins. Most TMBIM members show multiple bands when analyzed by SDS-PAGE, suggesting that they may be oligomeric. However, the molecular mechanisms of oligomerization, the native state of GAAPs in living cells and the functional significance of oligomerization have not been addressed. TMBIM members are thought to have evolved from an ancestral GAAP. Two different GAAPs, human (h) and viral (v)GAAP were therefore selected as models to examine oligomerization of TMBIM family members. We show that both hGAAP and vGAAP in their native states form oligomers and that oligomerization is pH-dependent. Surprisingly, hGAAP and vGAAP do not share the same oligomerization mechanism. Oligomerization of hGAAP is independent of cysteines, but oligomerization of vGAAP depends on cysteines 9 and 60. A mutant vGAAP that is unable to oligomerize revealed that monomeric vGAAP retains both its anti-apoptotic function and its effect on intracellular Ca(2+) stores. In conclusion, GAAP can oligomerize in a pH-regulated manner, and monomeric GAAP is functional.


Assuntos
Apoptose , Cálcio/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Membrana/metabolismo , Orthopoxvirus/metabolismo , Multimerização Proteica , Proteínas Virais/metabolismo , Substituição de Aminoácidos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Proteínas Inibidoras de Apoptose/genética , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Orthopoxvirus/genética , Proteínas Virais/genética
16.
J Gen Virol ; 95(Pt 9): 2038-2049, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24914067

RESUMO

Ubiquitylation is a covalent post-translational modification that regulates protein stability and is involved in many biological functions. Proteins may be modified with mono-ubiquitin or ubiquitin chains. Viruses have evolved multiple mechanisms to perturb the cell ubiquitin system and manipulate it to their own benefit. Here, we report ubiquitylation of vaccinia virus (VACV) protein N1. N1 is an inhibitor of the nuclear factor NF-κB and apoptosis that contributes to virulence, has a Bcl-2-like fold, and is highly conserved amongst orthopoxviruses. The interaction between N1 and ubiquitin occurs at endogenous protein levels during VACV infection and following ectopic expression of N1. Biochemical analysis demonstrated that N1 is covalently ubiquitylated, and heterodimers of ubiquitylated and non-ubiquitylated N1 monomers were identified, suggesting that ubiquitylation does not inhibit N1 dimerization. Studies with other VACV Bcl-2 proteins, such as C6 or B14, revealed that although these proteins also interact with ubiquitin, these interactions are non-covalent. Finally, mutagenesis of N1 showed that ubiquitylation occurs in a conventional lysine-dependent manner at multiple acceptor sites because only an N1 allele devoid of lysine residues remained unmodified. Taken together, we described a previously uncharacterized modification of the VACV protein N1 that provided a new layer of complexity to the biology of this virulence factor, and provided another example of the intricate interplay between poxviruses and the host ubiquitin system.


Assuntos
Ubiquitinação/genética , Vaccinia virus/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo , Animais , Apoptose , Linhagem Celular , Chlorocebus aethiops , Dimerização , Células HEK293 , Humanos , Lisina/química , Macrófagos/virologia , Camundongos , Mutação , NF-kappa B/antagonistas & inibidores , Ubiquitinação/fisiologia , Vacínia , Fatores de Virulência/genética
17.
J Gen Virol ; 95(Pt 12): 2757-2768, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25090990

RESUMO

Vaccinia virus (VACV) is a large dsDNA virus encoding ~200 proteins, several of which inhibit apoptosis. Here, a comparative study of anti-apoptotic proteins N1, F1, B13 and Golgi anti-apoptotic protein (GAAP) in isolation and during viral infection is presented. VACVs strains engineered to lack each gene separately still blocked apoptosis to some degree because of functional redundancy provided by the other anti-apoptotic proteins. To overcome this redundancy, we inserted each gene separately into a VACV strain (vv811) that lacked all these anti-apoptotic proteins and that induced apoptosis efficiently during infection. Each protein was also expressed in cells using lentivirus vectors. In isolation, each VACV protein showed anti-apoptotic activity in response to specific stimuli, as measured by immunoblotting for cleaved poly(ADP ribose) polymerase-1 and caspase-3 activation. Of the proteins tested, B13 was the most potent inhibitor, blocking both intrinsic and extrinsic stimuli, whilst the activity of the other proteins was largely restricted to inhibition of intrinsic stimuli. In addition, B13 and F1 were effective blockers of apoptosis induced by vv811 infection. Finally, whilst differences in induction of apoptosis were barely detectable during infection with VACV strain Western Reserve compared with derivative viruses lacking individual anti-apoptotic genes, several of these proteins reduced activation of caspase-3 during infection by vv811 strains expressing these proteins. These results illustrated that vv811 was a useful tool to determine the role of VACV proteins during infection and that whilst all of these proteins have some anti-apoptotic activity, B13 was the most potent.


Assuntos
Vaccinia virus/metabolismo , Proteínas Virais/metabolismo , Apoptose , Linhagem Celular , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica , Humanos , Osteossarcoma , Proteínas Virais/genética
18.
J Gen Virol ; 94(Pt 11): 2367-2392, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23999164

RESUMO

Virus infection of mammalian cells is sensed by pattern recognition receptors and leads to an innate immune response that restricts virus replication and induces adaptive immunity. In response, viruses have evolved many countermeasures that enable them to replicate and be transmitted to new hosts, despite the host innate immune response. Poxviruses, such as vaccinia virus (VACV), have large DNA genomes and encode many proteins that are dedicated to host immune evasion. Some of these proteins are secreted from the infected cell, where they bind and neutralize complement factors, interferons, cytokines and chemokines. Other VACV proteins function inside cells to inhibit apoptosis or signalling pathways that lead to the production of interferons and pro-inflammatory cytokines and chemokines. In this review, these VACV immunomodulatory proteins are described and the potential to create more immunogenic VACV strains by manipulation of the gene encoding these proteins is discussed.


Assuntos
Evasão da Resposta Imune/imunologia , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade , Proteínas Virais/metabolismo , Animais , Humanos , Imunomodulação , Vacínia/imunologia , Vacínia/virologia , Vaccinia virus/metabolismo , Proteínas Virais/genética , Virulência
19.
PLoS Pathog ; 7(12): e1002430, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22194685

RESUMO

Vaccinia virus (VACV) protein N1 is an intracellular virulence factor and belongs to a family of VACV B-cell lymphoma (Bcl)-2-like proteins whose members inhibit apoptosis or activation of pro-inflammatory transcription factors, such as interferon (IFN) regulatory factor-3 (IRF-3) and nuclear factor-κB (NF-κB). Unusually, N1 inhibits both apoptosis and NF-κB activation. To understand how N1 exerts these different functions, we have mutated residues in the Bcl-2-like surface groove and at the interface used to form N1 homodimers. Mutagenesis of the surface groove abolished only the N1 anti-apoptotic activity and protein crystallography showed these mutants differed from wild-type N1 only at the site of mutation. Conversely, mutagenesis of the dimer interface converted N1 to a monomer and affected only inhibition of NF-κB activation. Collectively, these data show that N1 inhibits pro-inflammatory and pro-apoptotic signalling using independent surfaces of the protein. To determine the relative contribution of each activity to virus virulence, mutant N1 alleles were introduced into a VACV strain lacking N1 and the virulence of these viruses was analysed after intradermal and intranasal inoculation in mice. In both models, VACV containing a mutant N1 unable to inhibit apoptosis had similar virulence to wild-type virus, whereas VACV containing a mutant N1 impaired for NF-κB inhibition induced an attenuated infection similar to that of the N1-deleted virus. This indicates that anti-apoptotic activity of N1 does not drive virulence in these in vivo models, and highlights the importance of pro-inflammatory signalling in the immune response against viral infections.


Assuntos
Apoptose/fisiologia , NF-kappa B/metabolismo , Vaccinia virus/patogenicidade , Proteínas Virais/química , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Vaccinia virus/genética , Vaccinia virus/metabolismo , Proteínas Virais/genética , Virulência
20.
Nat Med ; 29(9): 2317-2324, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37710003

RESUMO

The 2022 global mpox outbreak raises questions about how this zoonotic disease established effective human-to-human transmission and its potential for further adaptation. The 2022 outbreak virus is related to an ongoing outbreak in Nigeria originally reported in 2017, but the evolutionary path linking the two remains unclear due to a lack of genomic data between 2018, when virus exportations from Nigeria were first recorded, and 2022, when the global mpox outbreak began. Here, 18 viral genomes obtained from patients across southern Nigeria in 2019-2020 reveal multiple lineages of monkeypox virus (MPXV) co-circulated in humans for several years before 2022, with progressive accumulation of mutations consistent with APOBEC3 activity over time. We identify Nigerian A.2 lineage isolates, confirming the lineage that has been multiply exported to North America independently of the 2022 outbreak originated in Nigeria, and that it has persisted by human-to-human transmission in Nigeria for more than 2 years before its latest exportation. Finally, we identify a lineage-defining APOBEC3-style mutation in all A.2 isolates that disrupts gene A46R, encoding a viral innate immune modulator. Collectively, our data demonstrate MPXV capacity for sustained diversification within humans, including mutations that may be consistent with established mechanisms of poxvirus adaptation.


Assuntos
Monkeypox virus , Mpox , Humanos , Animais , Monkeypox virus/genética , Mpox/epidemiologia , Mpox/genética , Zoonoses , Surtos de Doenças , Evolução Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA