Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(17): E2253-62, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25877153

RESUMO

Although inhibition of cyclic nucleotide phosphodiesterase type 3 (PDE3) has been reported to protect rodent heart against ischemia/reperfusion (I/R) injury, neither the specific PDE3 isoform involved nor the underlying mechanisms have been identified. Targeted disruption of PDE3 subfamily B (PDE3B), but not of PDE3 subfamily A (PDE3A), protected mouse heart from I/R injury in vivo and in vitro, with reduced infarct size and improved cardiac function. The cardioprotective effect in PDE3B(-/-) heart was reversed by blocking cAMP-dependent PKA and by paxilline, an inhibitor of mitochondrial calcium-activated K channels, the opening of which is potentiated by cAMP/PKA signaling. Compared with WT mitochondria, PDE3B(-/-) mitochondria were enriched in antiapoptotic Bcl-2, produced less reactive oxygen species, and more frequently contacted transverse tubules where PDE3B was localized with caveolin-3. Moreover, a PDE3B(-/-) mitochondrial fraction containing connexin-43 and caveolin-3 was more resistant to Ca(2+)-induced opening of the mitochondrial permeability transition pore. Proteomics analyses indicated that PDE3B(-/-) heart mitochondria fractions were enriched in buoyant ischemia-induced caveolin-3-enriched fractions (ICEFs) containing cardioprotective proteins. Accumulation of proteins into ICEFs was PKA dependent and was achieved by ischemic preconditioning or treatment of WT heart with the PDE3 inhibitor cilostamide. Taken together, these findings indicate that PDE3B deletion confers cardioprotective effects because of cAMP/PKA-induced preconditioning, which is associated with the accumulation of proteins with cardioprotective function in ICEFs. To our knowledge, our study is the first to define a role for PDE3B in cardioprotection against I/R injury and suggests PDE3B as a target for cardiovascular therapies.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/deficiência , Traumatismo por Reperfusão Miocárdica , Miocárdio/enzimologia , Animais , Caveolina 3/genética , Caveolina 3/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , AMP Cíclico/genética , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/farmacologia , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Inibidores de Fosfodiesterase/farmacologia , Quinolonas/farmacologia
2.
J Immunol ; 195(6): 2763-73, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26268658

RESUMO

Pulmonary tuberculosis (TB) is characterized by oxidative stress and lung tissue destruction by matrix metalloproteinases (MMPs). The interplay between these distinct pathological processes and the implications for TB diagnosis and disease staging are poorly understood. Heme oxygenase-1 (HO-1) levels were previously shown to distinguish active from latent TB, as well as successfully treated Mycobacterium tuberculosis infection. MMP-1 expression is also associated with active TB. In this study, we measured plasma levels of these two important biomarkers in distinct TB cohorts from India and Brazil. Patients with active TB expressed either very high levels of HO-1 and low levels of MMP-1 or the converse. Moreover, TB patients with either high HO-1 or MMP-1 levels displayed distinct clinical presentations, as well as plasma inflammatory marker profiles. In contrast, in an exploratory North American study, inversely correlated expression of HO-1 and MMP-1 was not observed in patients with other nontuberculous lung diseases. To assess possible regulatory interactions in the biosynthesis of these two enzymes at the cellular level, we studied the expression of HO-1 and MMP-1 in M. tuberculosis-infected human and murine macrophages. We found that infection of macrophages with live virulent M. tuberculosis is required for robust induction of high levels of HO-1 but not MMP-1. In addition, we observed that CO, a product of M. tuberculosis-induced HO-1 activity, inhibits MMP-1 expression by suppressing c-Jun/AP-1 activation. These findings reveal a mechanistic link between oxidative stress and tissue remodeling that may find applicability in the clinical staging of TB patients.


Assuntos
Heme Oxigenase-1/sangue , Metaloproteinase 1 da Matriz/sangue , Estresse Oxidativo/fisiologia , Tuberculose Pulmonar/patologia , Adulto , Idoso , Biomarcadores/sangue , Brasil , Feminino , Heme Oxigenase-1/metabolismo , Humanos , Índia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Ligação a TGF-beta Latente/sangue , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Metaloproteinase 1 da Matriz/biossíntese , Pessoa de Meia-Idade , Mycobacterium tuberculosis/imunologia , Fator de Transcrição AP-1/metabolismo , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Estados Unidos , Adulto Jovem
3.
Biochem J ; 473(22): 4205-4225, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27647936

RESUMO

Oxidative stress plays a pivotal role in pathogenesis of cardiovascular diseases and diabetes; however, the roles of protein kinase A (PKA) and human phosphodiesterase 3A (hPDE3A) remain unknown. Here, we show that yeast expressing wild-type (WT) hPDE3A or K13R hPDE3A (putative ubiquitinylation site mutant) exhibited resistance or sensitivity to exogenous hydrogen peroxide (H2O2), respectively. H2O2-stimulated ROS production was markedly increased in yeast expressing K13R hPDE3A (Oxidative stress Sensitive 1, OxiS1), compared with yeast expressing WT hPDE3A (Oxidative stress Resistant 1, OxiR1). In OxiR1, YAP1 and YAP1-dependent antioxidant genes were up-regulated, accompanied by a reduction in thioredoxin peroxidase. In OxiS1, expression of YAP1 and YAP1-dependent genes was impaired, and the thioredoxin system malfunctioned. H2O2 increased cyclic adenosine monophosphate (cAMP)-hydrolyzing activity of WT hPDE3A, but not K13R hPDE3A, through PKA-dependent phosphorylation of hPDE3A, which was correlated with its ubiquitinylation. The changes in antioxidant gene expression did not directly correlate with differences in cAMP-PKA signaling. Despite differences in their capacities to hydrolyze cAMP, total cAMP levels among OxiR1, OxiS1, and mock were similar; PKA activity, however, was lower in OxiS1 than in OxiR1 or mock. During exposure to H2O2, however, Sch9p activity, a target of Rapamycin complex 1-regulated Rps6 kinase and negative-regulator of PKA, was rapidly reduced in OxiR1, and Tpk1p, a PKA catalytic subunit, was diffusely spread throughout the cytosol, with PKA activation. In OxiS1, Sch9p activity was unchanged during exposure to H2O2, consistent with reduced activation of PKA. These results suggest that, during oxidative stress, TOR-Sch9 signaling might regulate PKA activity, and that post-translational modifications of hPDE3A are critical in its regulation of cellular recovery from oxidative stress.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Saccharomyces cerevisiae/enzimologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Ativação Enzimática/efeitos dos fármacos , Citometria de Fluxo , Humanos , Peróxido de Hidrogênio/farmacologia , Imunoprecipitação , Microscopia de Fluorescência , Modelos Biológicos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
4.
J Am Soc Nephrol ; 27(5): 1312-20, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26374610

RESUMO

Aberrant intracellular calcium levels and increased cAMP signaling contribute to the development of polycystic kidney disease (PKD). cAMP can be hydrolyzed by various phosphodiesterases (PDEs). To examine the role of cAMP hydrolysis and the most relevant PDEs in the pathogenesis of PKD, we examined cyst development in Pde1- or Pde3-knockout mice on the Pkd2(-/WS25) background (WS25 is an unstable Pkd2 allele). These PDEs were selected because of their importance in cross-talk between calcium and cyclic nucleotide signaling (PDE1), control of cell proliferation and cystic fibrosis transmembrane conductance regulator (CFTR) -driven fluid secretion (PDE3), and response to vasopressin V2 receptor activation (both). In Pkd2(-/WS25) mice, knockout of Pde1a, Pde1c, or Pde3a but not of Pde1b or Pde3b aggravated the development of PKD and was associated with higher levels of protein kinase A-phosphorylated (Ser133) cAMP-responsive binding protein (P-CREB), activating transcription factor-1, and CREB-induced CRE modulator proteins in kidney nuclear preparations. Immunostaining also revealed higher expression of P-CREB in Pkd2(-/) (WS25);Pde1a(-/-), Pkd2(-) (/WS25);Pde1c(-/-), and Pkd2(-/) (WS25);Pde3a(-/-) kidneys. The cystogenic effect of desmopressin administration was markedly enhanced in Pkd2(-/WS25);Pde3a(-/-) mice, despite PDE3 accounting for only a small fraction of renal cAMP PDE activity. These observations show that calcium- and calmodulin-dependent PDEs (PDE1A and PDE1C) and PDE3A modulate the development of PKD, possibly through the regulation of compartmentalized cAMP pools that control cell proliferation and CFTR-driven fluid secretion. Treatments capable of increasing the expression or activity of these PDEs may, therefore, retard the development of PKD.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/fisiologia , Doenças Renais Policísticas/enzimologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Doenças Renais Policísticas/etiologia , Índice de Gravidade de Doença
5.
Proc Natl Acad Sci U S A ; 110(49): 19778-83, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248367

RESUMO

Inhibitors of cyclic nucleotide phosphodiesterase (PDE) PDE3A have inotropic actions in human myocardium, but their long-term use increases mortality in patients with heart failure. Two isoforms in cardiac myocytes, PDE3A1 and PDE3A2, have identical amino acid sequences except for a unique N-terminal extension in PDE3A1. We expressed FLAG-tagged PDE3A1 and PDE3A2 in HEK293 cells and examined their regulation by PKA- and PKC-mediated phosphorylation. PDE3A1, which is localized to intracellular membranes, and PDE3A2, which is cytosolic, were phosphorylated at different sites within their common sequence. Exposure to isoproterenol led to phosphorylation of PDE3A1 at the 14-3-3-binding site S312, whereas exposure to PMA led to phosphorylation of PDE3A2 at an alternative 14-3-3-binding site, S428. PDE3A2 activity was stimulated by phosphorylation at S428, whereas PDE3A1 activity was not affected by phosphorylation at either site. Phosphorylation of PDE3A1 by PKA and of PDE3A2 by PKC led to shifts in elution on gel-filtration chromatography consistent with increased interactions with other proteins, and 2D electrophoresis of coimmunoprecipitated proteins revealed that the two isoforms have distinct protein interactomes. A similar pattern of differential phosphorylation of endogenous PDE3A1 and PDE3A2 at S312 and S428 is observed in human myocardium. The selective phosphorylation of PDE3A1 and PDE3A2 at alternative sites through different signaling pathways, along with the different functional consequences of phosphorylation for each isoform, suggest they are likely to have distinct roles in cyclic nucleotide-mediated signaling in human myocardium, and raise the possibility that isoform-selective inhibition may allow inotropic responses without an increase in mortality.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores da Fosfodiesterase 3/farmacologia , Proteínas 14-3-3/genética , Sítios de Ligação/genética , Cromatografia em Gel , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eletroforese em Gel Bidimensional , Ativação Enzimática/fisiologia , Células HEK293 , Humanos , Imunoprecipitação , Isoenzimas/metabolismo , Isoproterenol/farmacologia , Inibidores da Fosfodiesterase 3/metabolismo , Fosforilação , Proteína Quinase C/metabolismo
6.
Nature ; 445(7129): 771-5, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17220874

RESUMO

Regulatory CD4+ T cells (Tr cells), the development of which is critically dependent on X-linked transcription factor Foxp3 (forkhead box P3), prevent self-destructive immune responses. Despite its important role, molecular and functional features conferred by Foxp3 to Tr precursor cells remain unknown. It has been suggested that Foxp3 expression is required for both survival of Tr precursors as well as their inability to produce interleukin (IL)-2 and independently proliferate after T-cell-receptor engagement, raising the possibility that such 'anergy' and Tr suppressive capacity are intimately linked. Here we show, by dissociating Foxp3-dependent features from those induced by the signals preceding and promoting its expression in mice, that the latter signals include several functional and transcriptional hallmarks of Tr cells. Although its function is required for Tr cell suppressor activity, Foxp3 to a large extent amplifies and fixes pre-established molecular features of Tr cells, including anergy and dependence on paracrine IL-2. Furthermore, Foxp3 solidifies Tr cell lineage stability through modification of cell surface and signalling molecules, resulting in adaptation to the signals required to induce and maintain Tr cells. This adaptation includes Foxp3-dependent repression of cyclic nucleotide phosphodiesterase 3B, affecting genes responsible for Tr cell homeostasis.


Assuntos
Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Animais , Linhagem da Célula , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Feminino , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Homeostase , Interleucina-12/imunologia , Interleucina-12/metabolismo , Masculino , Camundongos , Transdução de Sinais , Linfócitos T Reguladores/imunologia
7.
J Biol Chem ; 286(29): 26238-49, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21632535

RESUMO

Cyclic nucleotide phosphodiesterase 3 (PDE3) is an important regulator of cyclic adenosine monophosphate (cAMP) signaling within the cardiovascular system. In this study, we examined the role of PDE3A and PDE3B isoforms in regulation of growth of cultured vascular smooth muscle cells (VSMCs) and the mechanisms by which they may affect signaling pathways that mediate mitogen-induced VSMC proliferation. Serum- and PDGF-induced DNA synthesis in VSMCs grown from aortas of PDE3A-deficient (3A-KO) mice was markedly less than that in VSMCs from PDE3A wild type (3A-WT) and PDE3B-deficient (3B-KO) mice. The reduced growth response was accompanied by significantly less phosphorylation of extracellular signal-regulated kinase (ERK) in 3A-KO VSMCs, most likely due to a combination of greater site-specific inhibitory phosphorylation of Raf-1(Ser-²59) by protein kinase A (PKA) and enhanced dephosphorylation of ERKs due to elevated mitogen-activated protein kinase phosphatase 1 (MKP-1). Furthermore, 3A-KO VSMCs, compared with 3A-WT, exhibited higher basal PKA activity and cAMP response element-binding protein (CREB) phosphorylation, higher levels of p53 and p53 phosphorylation, and elevated p21 protein together with lower levels of Cyclin-D1 and retinoblastoma (Rb) protein and Rb phosphorylation. Adenoviral overexpression of inactive CREB partially restored growth effects of serum in 3A-KO VSMCs. In contrast, exposure of 3A-WT VSMCs to VP16 CREB (active CREB) was associated with inhibition of serum-induced DNA synthesis similar to that in untreated 3A-KO VSMCs. Transfection of 3A-KO VSMCs with p53 siRNA reduced p21 and MKP-1 levels and completely restored growth without affecting amounts of Cyclin-D1 and Rb phosphorylation. We conclude that PDE3A regulates VSMC growth via two complementary pathways, i.e. PKA-catalyzed inhibitory phosphorylation of Raf-1 with resulting inhibition of MAPK signaling and PKA/CREB-mediated induction of p21, leading to G0/G1 cell cycle arrest, as well as by increased accumulation of p53, which induces MKP-1, p21, and WIP1, leading to inhibition of G1 to S cell cycle progression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/deficiência , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Deleção de Genes , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/citologia , Animais , Biocatálise/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA/biossíntese , Fosfatase 1 de Especificidade Dupla/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Técnicas de Inativação de Genes , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , RNA Interferente Pequeno/genética
8.
Proc Natl Acad Sci U S A ; 106(15): 6158-63, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19332778

RESUMO

ADP-ribosylation factors (ARFs) have crucial roles in vesicular trafficking. Brefeldin A-inhibited guanine nucleotide-exchange proteins (BIG)1 and BIG2 catalyze the activation of class I ARFs by accelerating replacement of bound GDP with GTP. Several additional and differing actions of BIG1 and BIG2 have been described. These include the presence in BIG2 of 3 A kinase-anchoring protein (AKAP) domains, one of which is identical in BIG1. Proteins that contain AKAP sequences act as scaffolds for the assembly of PKA with other enzymes, substrates, and regulators in complexes that constitute molecular machines for the reception, transduction, and integration of signals from cAMP or other sources, which are initiated, propagated, and transmitted by chemical, electrical, or mechanical means. Specific depletion of HeLa cell PDE3A with small interfering RNA significantly decreased membrane-associated BIG1 and BIG2, which by confocal immunofluorescence microscopy were widely dispersed from an initial perinuclear Golgi concentration. Concurrently, activated ARF1-GTP was significantly decreased. Selective inhibition of PDE3A by 1-h incubation of cells with cilostamide similarly decreased membrane-associated BIG1. We suggest that decreasing PDE3A allowed cAMP to accumulate in microdomains where its enzymatic activity limited cAMP concentration. There, cAMP-activated PKA phosphorylated BIG1 and BIG2 (AKAPs for assembly of PKA, PDE3A, and other molecules), which decreased their GEP activity and thereby amounts of activated ARF1-GTP. Thus, PDE3A in these BIG1 and BIG2 AKAP complexes may contribute to the regulation of ARF function via limitation of cAMP effects with spatial and temporal specificity.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/isolamento & purificação , Citosol/efeitos dos fármacos , Citosol/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/isolamento & purificação , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Inibidores da Fosfodiesterase 3 , Ligação Proteica , RNA Interferente Pequeno/genética
10.
Biochem J ; 424(3): 399-410, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19747167

RESUMO

In adipocytes, PDE3B (phosphodiesterase 3B) is an important regulatory effector in signalling pathways controlled by insulin and cAMP-increasing hormones. Stimulation of 3T3-L1 adipocytes with insulin or the beta3-adrenergic receptor agonist CL316243 (termed CL) indicated that insulin preferentially phosphorylated/activated PDE3B associated with internal membranes (endoplasmic reticulum/Golgi), whereas CL preferentially phosphorylated/activated PDE3B associated with caveolae. siRNA (small interfering RNA)-mediated KD (knockdown) of CAV-1 (caveolin-1) in 3T3-L1 adipocytes resulted in down-regulation of expression of membrane-associated PDE3B. Insulin-induced activation of PDE3B was reduced, whereas CL-mediated activation was almost totally abolished. Similar results were obtained in adipocytes from Cav-1-deficient mice. siRNA-mediated KD of CAV-1 in 3T3-L1 adipocytes also resulted in inhibition of CL-stimulated phosphorylation of HSL (hormone-sensitive lipase) and perilipin A, and of lipolysis. Superose 6 gel-filtration chromatography of solubilized membrane proteins from adipocytes stimulated with insulin or CL demonstrated the reversible assembly of distinct macromolecular complexes that contained 32P-phosphorylated PDE3B and signalling molecules thought to be involved in its activation. Insulin- and CL-induced macromolecular complexes were enriched in cholesterol, and contained certain common signalling proteins [14-3-3, PP2A (protein phosphatase 2A) and cav-1]. The complexes present in insulin-stimulated cells contained tyrosine-phosphorylated IRS-1 (insulin receptor substrate 1) and its downstream signalling proteins, whereas CL-activated complexes contained beta3-adrenergic receptor, PKA-RII [PKA (cAMP-dependent protein kinase)-regulatory subunit] and HSL. Insulin- and CL-mediated macromolecular complex formation was significantly inhibited by CAV-1 KD. These results suggest that cav-1 acts as a molecular chaperone or scaffolding molecule in cholesterol-rich lipid rafts that may be necessary for the proper stabilization and activation of PDE3B in response to CL and insulin.


Assuntos
Adipócitos/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Dioxóis/farmacologia , Insulina/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Western Blotting , Cavéolas/efeitos dos fármacos , Cavéolas/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Retículo Endoplasmático/enzimologia , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Complexo de Golgi/enzimologia , Lipólise/efeitos dos fármacos , Substâncias Macromoleculares/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato
11.
J Clin Invest ; 116(12): 3240-51, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17143332

RESUMO

Cyclic nucleotide phosphodiesterase 3B (PDE3B) has been suggested to be critical for mediating insulin/IGF-1 inhibition of cAMP signaling in adipocytes, liver, and pancreatic beta cells. In Pde3b-KO adipocytes we found decreased adipocyte size, unchanged insulin-stimulated phosphorylation of protein kinase B and activation of glucose uptake, enhanced catecholamine-stimulated lipolysis and insulin-stimulated lipogenesis, and blocked insulin inhibition of catecholamine-stimulated lipolysis. Glucose, alone or in combination with glucagon-like peptide-1, increased insulin secretion more in isolated pancreatic KO islets, although islet size and morphology and immunoreactive insulin and glucagon levels were unchanged. The beta(3)-adrenergic agonist CL 316,243 (CL) increased lipolysis and serum insulin more in KO mice, but blood glucose reduction was less in CL-treated KO mice. Insulin resistance was observed in KO mice, with liver an important site of alterations in insulin-sensitive glucose production. In KO mice, liver triglyceride and cAMP contents were increased, and the liver content and phosphorylation states of several insulin signaling, gluconeogenic, and inflammation- and stress-related components were altered. Thus, PDE3B may be important in regulating certain cAMP signaling pathways, including lipolysis, insulin-induced antilipolysis, and cAMP-mediated insulin secretion. Altered expression and/or regulation of PDE3B may contribute to metabolic dysregulation, including systemic insulin resistance.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/genética , Metabolismo Energético/genética , Homeostase/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Adiponectina/metabolismo , Animais , Western Blotting , Catecolaminas/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Metabolismo Energético/fisiologia , Feminino , Homeostase/fisiologia , Imuno-Histoquímica , Insulina/metabolismo , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Lipólise/genética , Lipólise/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Tempo , Triglicerídeos/metabolismo
12.
Cell Signal ; 19(8): 1765-71, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17482796

RESUMO

Phosphodiesterase type 3 (PDE3) is an important regulator of cAMP-mediated responses within the cardiovascular system. PDE3 exists as two subtypes: PDE3A and PDE3B, with distinct cellular and subcellular locations. Due to the lack of subtype-specific pharmacological tools, the definitive role of each subtype in regulating cardiovascular function has not been determined. In this study, we investigated platelet and cardiac function, using PDE3A and PDE3B gene knockout (KO) mice. Platelet-rich-plasma was prepared from the blood of KO and age-matched wild-type (WT) mice. PGE1 (1 microg/mL) almost completely inhibited aggregation of platelets from WT, PDE3A KO and PDE3B KO mice. In platelets from WT mice, cilostamide (100 microM), a selective PDE3 inhibitor, blocked collagen- and ADP-induced aggregation. In contrast, cilostamide had no effect on aggregation of platelets from PDE3A KO mice. In PDE3B KO mice, inhibition of collagen- and ADP-induced platelet aggregation was similar to that in WT mice. The resting intra-platelet cAMP concentration in platelets from PDE3A KO mice was twice that in the WT platelets. After PGE1 (0.1 microg/mL) stimulation, intra-cellular cAMP concentration was increased significantly more in platelets from PDE3A KO mice compared to WT mice. In vivo, PDE3A KO mice were protected against collagen/epinephrine-induced pulmonary thrombosis and death, while no such protection was observed in PDE3B KO mice. The heart rate of PDE3A KO mice was significantly higher, compared with age-matched WT mice, while that of PDE3B KO mice was similar to WT. There was no difference in cardiac contractility between PDE3A or PDE3B KO mice. Heart rate and contractility were increased in a similar dose-dependent fashion by isoproterenol in both types of KO mice. Cilostamide increased heart rate and contractility in WT and PDE3B KO but not in PDE3A KO mice. Compared to WT and PDE3B KO mice, cyclic AMP-PDE activity in membrane fractions prepared from the hearts of PDE3A KO mice was lower and not inhibited by cilostamide. The data suggest that PDE3A is the main subtype of PDE3 expressed in platelets and cardiac ventricular myocytes, and is responsible for the functional changes caused by PDE3 inhibition.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Plaquetas/metabolismo , Regulação Enzimológica da Expressão Gênica , Miocárdio/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/análise , 3',5'-AMP Cíclico Fosfodiesterases/genética , Animais , AMP Cíclico/análise , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Camundongos , Camundongos Knockout , Agregação Plaquetária/fisiologia , Plasma Rico em Plaquetas/metabolismo
13.
Cell Signal ; 19(7): 1505-13, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17368848

RESUMO

cAMP signaling is important for the regulation of insulin secretion in pancreatic beta-cells. The level of intracellular cAMP is controlled through its production by adenylyl cyclases and its breakdown by cyclic nucleotide phosphodiesterases (PDEs). We have previously shown that PDE3B is involved in the regulation of nutrient-stimulated insulin secretion. Here, aiming at getting deeper functional insights, we have examined the role of PDE3B in the two phases of insulin secretion as well as its localization in the beta-cell. Depolarization-induced insulin secretion was assessed and in models where PDE3B was overexpressed [islets from transgenic RIP-PDE3B/7 mice and adenovirally (AdPDE3B) infected INS-1 (832/13) cells], the first phase of insulin secretion, occurring in response to stimulation with high K(+) for 5 min, was significantly reduced ( approximately 25% compared to controls). In contrast, in islets from PDE3B(-/-) mice the response to high K(+) was increased. Further, stimulation of isolated beta-cells from RIP-PDE3B/7 islets, using successive trains of voltage-clamped depolarizations, resulted in reduced Ca(2+)-triggered first phase exocytotic response as well as reduced granule mobilization-dependent second phase, compared to wild-type beta-cells. Using sub-cellular fractionation, confocal microscopy and transmission electron microscopy of isolated mouse islets and INS-1 (832/13) cells, we show that endogenous and overexpressed PDE3B is localized to insulin granules and plasma membrane. We conclude that PDE3B, through hydrolysis of cAMP in pools regulated by Ca(2+), plays a regulatory role in depolarization-induced insulin secretion and that the enzyme is associated with the exocytotic machinery in beta-cells.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Cálcio/metabolismo , Exocitose , Células Secretoras de Insulina/enzimologia , Insulina/metabolismo , Animais , Arginina/farmacologia , Membrana Celular/efeitos dos fármacos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Exocitose/efeitos dos fármacos , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Potássio/farmacologia , Transporte Proteico/efeitos dos fármacos , Vesículas Secretórias/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia
14.
Biochem J ; 404(2): 257-68, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17324123

RESUMO

Fractionation of 3T3-L1 adipocyte membranes revealed that PDE3B (phosphodiesterase 3B) was associated with PM (plasma membrane) and ER (endoplasmic reticulum)/Golgi fractions, that insulin-induced phosphorylation/activation of PDE3B was greater in internal membranes than PM fractions, and that there was no significant translocation of PDE3B between membrane fractions. Insulin also induced formation of large macromolecular complexes, separated during gel filtration (Superose 6 columns) of solubilized membranes, which apparently contain phosphorylated/activated PDE3B and signalling molecules potentially involved in its activation by insulin, e.g. IRS-1 (insulin receptor substrate-1), IRS-2, PI3K p85 [p85-subunit of PI3K (phosphoinositide 3-kinase)], PKB (protein kinase B), HSP-90 (heat-shock protein 90) and 14-3-3. Expression of full-length recombinant FLAG-tagged murine (M) PDE3B and M3BDelta604 (MPDE3B lacking N-terminal 604 amino acids) indicated that the N-terminal region of MPDE3B was necessary for insulin-induced activation and recruitment of PDE3B. siRNA (small interfering RNA) knock-down of PDE3B indicated that PDE3B was not required for formation of insulin-induced complexes. Wortmannin inhibited insulin-induced assembly of macromolecular complexes, as well as phosphorylation/activation of PKB and PDE3B, and their co-immunoprecipitation. Another PI3K inhibitor, LY294002, and the tyrosine kinase inhibitor, Genistein, also inhibited insulin-induced activation of PDE3B and its co-immunoprecipitation with PKB. Confocal microscopy indicated co-localization of PDE3B and PKB. Recombinant MPDE3B co-immunoprecipitated, and co-eluted during Superose 12 chromatography, to a greater extent with recombinant pPKB (phosphorylated/activated PKB) than dephospho-PKB or p-DeltaPKB [pPKB lacking its PH domain (pleckstrin homology domain)]. Truncated recombinant MPDE3B proteins and pPKB did not efficiently co-immunoprecipitate, suggesting that structural determinants for their interaction reside in, or are regulated by, the N-terminal portion of MPDE3B. Recruitment of PDE3B in macromolecular complexes may be critical for regulation of specific cAMP pools and signalling pathways by insulin, e.g. lipolysis.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Insulina/farmacologia , Substâncias Macromoleculares , Proteínas Proto-Oncogênicas c-akt/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/química , Sequência de Aminoácidos , Androstadienos/farmacologia , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Ativação Enzimática , Imunoprecipitação , Camundongos , Microscopia Confocal , Dados de Sequência Molecular , Células NIH 3T3 , Inibidores de Fosfodiesterase/farmacologia , RNA Interferente Pequeno , Wortmanina
15.
Oncotarget ; 8(25): 41026-41043, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28454120

RESUMO

We previously identified phosphodiesterase 3A (PDE3A) as a marker for interstitial cells of Cajal (ICC) in adult mouse gut. However, PDE3A expression and function during gut development and in ICC-derived gastrointestinal stromal tumors (GIST) remained unknown. Here we found that PDE3A was expressed throughout ICC development and that ICC density was halved in PDE3A-deficient mice. In the human imatinib-sensitive GIST882 cell line, the PDE3 inhibitor cilostazol halved cell viability (IC50 0.35 µM) and this effect synergized with imatinib (Chou-Talalay's CI50 0.15). Recently the compound 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one, or DNMDP was found to be cytotoxic selectively for cells expressing both PDE3A and Schlafen12 (SLFN12) (de Waal L et al. Nat Chem Bio 2016), identifying a new, non-catalytic, role for PDE3A. 108 out of 117 (92%) of our human GIST samples displayed both PDE3A and SLFN12 immunoreactivity. GIST882 cells express both PDE3A and SLFN12 and DNMDP decreased their viability by 90%. Our results suggest a role for PDE3A during ICC development and open novel perspectives for PDE3A in targeted GIST therapy, on one hand by the synergism between imatinib and cilostazol, a PDE3 inhibitor already in clinical use for other indications, and, on the other hand, by the neomorphic, druggable, PDE3A-SLFN12 cytotoxic interplay.


Assuntos
Biomarcadores Tumorais/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Tumores do Estroma Gastrointestinal/metabolismo , Células Intersticiais de Cajal/metabolismo , Idoso , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cilostazol , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Sinergismo Farmacológico , Feminino , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Células HEK293 , Humanos , Mesilato de Imatinib/farmacologia , Células Intersticiais de Cajal/efeitos dos fármacos , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Pessoa de Meia-Idade , Inibidores da Fosfodiesterase 3/farmacologia , Piridazinas/farmacologia , Tetrazóis/farmacologia
16.
Biosci Rep ; 37(4)2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28743736

RESUMO

Phosphodiesterase 3A (PDE3A), a member of the cGMP-inhibited cyclic nucleotide phosphodiesterase (PDE) family, plays important roles in oocyte maturation and vascular smooth muscle cell proliferation. However, the molecular mechanisms that regulate PDE3A gene expression remain largely unknown. In this study, we investigated the transcriptional regulation of PDE3A , and found that the splicing factor proline and glutamine rich (SFPQ) protein modulated PDE3A mRNA levels. Multiple transcription start sites (TSS1, 2, and 3) were identified within the first exon of PDE3A using 5'-rapid amplification of cDNA ends (RACE). Variable expression levels of three PDE3A variants were also observed in human tissues and HeLa cells. Several putative SFPQ-binding sites were identified upstream of the regulatory region of PDE3A -TSSs using chromatin immunoprecipitation sequencing (ChIP-seq). Serum-induced PDE3A expression was affected by increasing the amount of SFPQ binding to the upstream regulatory region of PDE3A In addition, transcription of PDE3A was lower in human cervical adenocarcinoma cells compared to normal cervical tissue. Furthermore, over-expression of PDE3A induced sensitivity to anti-cancer therapeutic agent, 6-(4-(diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one (DNMDP), in HeLa cells. Taken together, these results suggest that SFPQ functions as a transcriptional activator of PDE3A, which is involved in the regulation of DNMDP sensitivity , offering a novel molecular target for the development of anticancer therapies.

17.
Sci Rep ; 7: 40445, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084425

RESUMO

Understanding mechanisms by which a population of beige adipocytes is increased in white adipose tissue (WAT) reflects a potential strategy in the fight against obesity and diabetes. Cyclic adenosine monophosphate (cAMP) is very important in the development of the beige phenotype and activation of its thermogenic program. To study effects of cyclic nucleotides on energy homeostatic mechanisms, mice were generated by targeted inactivation of cyclic nucleotide phosphodiesterase 3b (Pde3b) gene, which encodes PDE3B, an enzyme that catalyzes hydrolysis of cAMP and cGMP and is highly expressed in tissues that regulate energy homeostasis, including adipose tissue, liver, and pancreas. In epididymal white adipose tissue (eWAT) of PDE3B KO mice on a SvJ129 background, cAMP/protein kinase A (PKA) and AMP-activated protein kinase (AMPK) signaling pathways are activated, resulting in "browning" phenotype, with a smaller increases in body weight under high-fat diet, smaller fat deposits, increased ß-oxidation of fatty acids (FAO) and oxygen consumption. Results reported here suggest that PDE3B and/or its downstream signaling partners might be important regulators of energy metabolism in adipose tissue, and potential therapeutic targets for treating obesity, diabetes and their associated metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/deficiência , Transdução de Sinais , Células 3T3-L1 , Adipócitos/metabolismo , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Metabolismo Energético , Ativação Enzimática , Epididimo/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Obesidade/metabolismo , Obesidade/prevenção & controle , Biogênese de Organelas , Fenótipo , Termogênese , Aumento de Peso
18.
J Endocrinol ; 189(3): 629-41, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16731793

RESUMO

Inadequate islet adaptation to insulin resistance leads to glucose intolerance and type 2 diabetes. Here we investigate whether beta-cell cAMP is crucial for islet adaptation and prevention of glucose intolerance in mice. Mice with a beta-cell-specific, 2-fold overexpression of the cAMP-degrading enzyme phosphodiesterase 3B (RIP-PDE3B/2 mice) were metabolically challenged with a high-fat diet. We found that RIP-PDE3B/2 mice early and rapidly develop glucose intolerance and insulin resistance, as compared with wild-type littermates, after 2 months of high-fat feeding. This was evident from advanced fasting hyperinsulinemia and early development of hyper-glycemia, in spite of hyperinsulinemia, as well as impaired capacity of insulin to suppress plasma glucose in an insulin tolerance test. In vitro analyses of insulin-stimulated lipogenesis in adipocytes and glucose uptake in skeletal muscle did not reveal reduced insulin sensitivity in these tissues. Significant steatosis was noted in livers from high-fat-fed wild-type and RIP-PDE3B/2 mice and liver triacyl-glycerol content was 3-fold higher than in wild-type mice fed a control diet. Histochemical analysis revealed severe islet perturbations, such as centrally located alpha-cells and reduced immunostaining for insulin and GLUT2 in islets from RIP-PDE3B/2 mice. Additionally, in vitro experiments revealed that the insulin secretory response to glucagon-like peptide-1 stimulation was markedly reduced in islets from high-fat-fed RIP-PDE3B/2 mice. We conclude that accurate regulation of beta-cell cAMP is necessary for adequate islet adaptation to a perturbed metabolic environment and protective for the development of glucose intolerance and insulin resistance.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Gorduras na Dieta/administração & dosagem , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/genética , Adaptação Fisiológica , Animais , Glicemia/análise , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Transportador de Glucose Tipo 2/análise , Imuno-Histoquímica/métodos , Insulina/sangue , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Triglicerídeos/análise
19.
Arch Oral Biol ; 51(2): 83-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16102722

RESUMO

Phosphodiesterase (PDE) 3 has been characterized in isolated rat submandibular acini. PDE3 activity was detected in homogenates of isolated rat submandibular acini; little or no PDE3 activity was found in ducts. About 62% of PDE3 activity in the acini was recovered in the supernatant fractions; 38% in particulate fractions. In the acini, but not ducts, PDE3A mRNA was detected by reverse transcriptase-polymerase chain reaction (RT-PCR). The PDE3-specific inhibitor, cilostamide, increased the ratio of apomucin mRNA/18s rRNA, as quantified by real-time RT-PCR. Our results indicate that PDE3A may be important in regulating cAMP pools that control acini functions.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Glândula Submandibular/enzimologia , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , 3',5'-AMP Cíclico Fosfodiesterases/genética , Animais , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Expressão Gênica , Masculino , Inibidores de Fosfodiesterase/farmacologia , Quinolonas/farmacologia , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Glândula Submandibular/citologia
20.
Sci Rep ; 6: 28056, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27321128

RESUMO

Activation of inflammation in white adipose tissue (WAT), includes infiltration/expansion of WAT macrophages, contributes pathogenesis of obesity, insulin resistance, and metabolic syndrome. The inflammasome comprises an intracellular sensor (NLR), caspase-1 and the adaptor ASC. Inflammasome activation leads to maturation of caspase-1 and processing of IL1ß, contributing to many metabolic disorders and directing adipocytes to a more insulin-resistant phenotype. Ablation of PDE3B in WAT prevents inflammasome activation by reducing expression of NLRP3, caspase-1, ASC, AIM2, TNFα, IL1ß and proinflammatory genes. Following IP injection of lipopolysaccharide (LPS), serum levels of IL1ß and TNFα were reduced in PDE3B(-/-)mice compared to WT. Activation of signaling cascades, which mediate inflammasome responses, were modulated in PDE3B(-/-)mice WAT, including smad, NFAT, NFkB, and MAP kinases. Moreover, expression of chemokine CCL2, MCP-1 and its receptor CCR2, which play an important role in macrophage chemotaxis, were reduced in WAT of PDE3B(-/-)mice. In addition, atherosclerotic plaque formation was significantly reduced in the aorta of apoE(-/-)/PDE3B(-/-)and LDL-R(-/-)/PDE3B(-/-)mice compared to apoE(-/-)and LDL-R(-/-)mice, respectively. Obesity-induced changes in serum-cholesterol were blocked in PDE3B(-/-)mice. Collectively, these data establish a role for PDE3B in modulating inflammatory response, which may contribute to a reduced inflammatory state in adipose tissue.


Assuntos
Tecido Adiposo Branco/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Caspase 1/genética , Caspase 1/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/deficiência , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Insulina/metabolismo , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA