Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Gen Comp Endocrinol ; 302: 113669, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33242479

RESUMO

Acute stress is regulated through the sympathetic adrenergic axis where catecholamines mobilize energy stores including carbohydrates as a principal element of the endocrine stress response. Leptin is a cytokine critical for regulating energy expenditure in vertebrates and is stimulated by various stressors in fish such as fasting, hyperosmotic challenge, and hypoxia. However, little is known about the regulatory interactions between leptin and the endocrine stress axis in fishes and other ectothermic vertebrates. We evaluated the actions of epinephrine and glucose in regulating leptin A (LepA) in vivo and in vitro in tilapia. Using hepatocyte incubations and a homologous LepA ELISA, we show that LepA synthesis and secretion decline as ambient glucose levels increase (10-25 mM). By contrast, bolus glucose administration in tilapia increases lepa mRNA levels 14-fold at 6 h, suggesting systemic factors regulated by glucose may counteract the direct inhibitory effects of glucose on hepatic lepa mRNA observed in vitro. Epinephrine stimulated glucose and LepA secretion from hepatocytes in a dose-dependent fashion within 15 min but had little effect on lepa mRNA levels. An in vivo injection of epinephrine into tilapia stimulated a rapid rise in blood glucose which was followed by a 4-fold increase in hepatic lepa mRNA levels at 2.5 and 6 h. Plasma LepA was also elevated by 6 h relative to controls. Recombinant tilapia LepA administration in vivo did not have any significant effect on plasma epinephrine levels. The results of this study demonstrate LepA is negatively regulated by rises in extracellular glucose at the level of the hepatocyte but stimulated by hyperglycemia in vivo. Further, epinephrine increases LepA. This, along with previous work demonstrating a hyperglycemic and glycogenolytic effect of LepA in tilapia, suggests that epinephrine may stimulate leptin secretion to augment and fine tune glucose mobilization and homeostasis as part of the integrated, adaptive stress response.


Assuntos
Tilápia , Animais , Epinefrina , Glucose , Leptina , Fígado
2.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299350

RESUMO

Leptin is a cytokine that regulates appetite and energy expenditure, where in fishes it is primarily produced in the liver and acts to mobilize carbohydrates. Most fishes have only one leptin receptor (LepR/LepRA1), however, paralogs have recently been documented in a few species. Here we reveal a second leptin receptor (LepRA2) in rainbow trout that is 77% similar to trout LepRA1. Phylogenetic analyses show a salmonid specific genome duplication event as the probable origin of the second LepR in trout. Tissues distributions showed tissue specific expression of these receptors, with lepra1 highest in the ovaries, nearly 50-fold higher than lepra2. Interestingly, lepra2 was most highly expressed in the liver while hepatic lepra1 levels were low. Feed deprivation elicited a decline in plasma leptin, an increase in hepatic lepra2 by one week and remained elevated at two weeks, while liver expression of lepra1 remained low. By contrast, muscle lepra1 mRNA increased at one and two weeks of fasting, while adipose lepra1 was concordantly lower in fasted fish. lepra2 transcript levels were not affected in muscle and fat. These data show lepra1 and lepra2 are differentially expressed across tissues and during feed deprivation, suggesting paralog- and tissue-specific functions for these leptin receptors.


Assuntos
Oncorhynchus mykiss/metabolismo , Receptores para Leptina/metabolismo , Tecido Adiposo/metabolismo , Sequência de Aminoácidos , Animais , Apetite/fisiologia , Metabolismo Energético/fisiologia , Jejum/metabolismo , Proteínas de Peixes/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Músculos/metabolismo , Filogenia , RNA Mensageiro/metabolismo , Alinhamento de Sequência
3.
Proc Natl Acad Sci U S A ; 112(9): 2770-5, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25730872

RESUMO

The intestinal epithelium forms a barrier protecting the organism from microbes and other proinflammatory stimuli. The integrity of this barrier and the proper response to infection requires precise regulation of powerful immune homing signals such as tumor necrosis factor (TNF). Dysregulation of TNF leads to inflammatory bowel diseases (IBD), but the mechanism controlling the expression of this potent cytokine and the events that trigger the onset of chronic inflammation are unknown. Here, we show that loss of function of the epigenetic regulator ubiquitin-like protein containing PHD and RING finger domains 1 (uhrf1) in zebrafish leads to a reduction in tnfa promoter methylation and the induction of tnfa expression in intestinal epithelial cells (IECs). The increase in IEC tnfa levels is microbe-dependent and results in IEC shedding and apoptosis, immune cell recruitment, and barrier dysfunction, consistent with chronic inflammation. Importantly, tnfa knockdown in uhrf1 mutants restores IEC morphology, reduces cell shedding, and improves barrier function. We propose that loss of epigenetic repression and TNF induction in the intestinal epithelium can lead to IBD onset.


Assuntos
Metilação de DNA , Epigênese Genética/fisiologia , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/embriologia , Peixe-Zebra/embriologia , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Inflamação/genética , Inflamação/mortalidade , Inflamação/patologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Transativadores/genética , Transativadores/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Gen Comp Endocrinol ; 240: 227-237, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27449341

RESUMO

Leptin is an important cytokine for regulating energy homeostasis, however, relatively little is known about its function and control in teleost fishes or other ectotherms, particularly with regard to interactions with the growth hormone (GH)/insulin-like growth factors (IGFs) growth regulatory axis. Here we assessed the regulation of LepA, the dominant paralog in tilapia (Oreochromis mossambicus) and other teleosts under altered nutritional state, and evaluated how LepA might alter pituitary growth hormone (GH) and hepatic insulin-like growth factors (IGFs) that are known to be disparately regulated by metabolic state. Circulating LepA, and lepa and lepr gene expression increased after 3-weeks fasting and declined to control levels 10days following refeeding. This pattern of leptin regulation by metabolic state is similar to that previously observed for pituitary GH and opposite that of hepatic GHR and/or IGF dynamics in tilapia and other fishes. We therefore evaluated if LepA might differentially regulate pituitary GH, and hepatic GH receptors (GHRs) and IGFs. Recombinant tilapia LepA (rtLepA) increased hepatic gene expression of igf-1, igf-2, ghr-1, and ghr-2 from isolated hepatocytes following 24h incubation. Intraperitoneal rtLepA injection, on the other hand, stimulated hepatic igf-1, but had little effect on hepatic igf-2, ghr1, or ghr2 mRNA abundance. LepA suppressed GH accumulation and gh mRNA in pituitaries in vitro, but had no effect on GH release. We next sought to test if abolition of pituitary GH via hypophysectomy (Hx) affects the expression of hepatic lepa and lepr. Hypophysectomy significantly increases hepatic lepa mRNA abundance, while GH replacement in Hx fish restores lepa mRNA levels to that of sham controls. Leptin receptor (lepr) mRNA was unchanged by Hx. In in vitro hepatocyte incubations, GH inhibits lepa and lepr mRNA expression at low concentrations, while higher concentration stimulates lepa expression. Taken together, these findings indicate LepA gene expression and secretion increases with fasting, consistent with the hormones function in promoting energy expenditure during catabolic stress. It would also appear that LepA might play an important role in stimulating GHR and IGFs to potentially spare declines in these factors during catabolism. Evidence also suggests for the first time in teleosts that GH may exert important regulatory effects on hepatic LepA production, insofar as physiological levels (0.05-1 nM) suppresse lepa mRNA accumulation. Leptin A, may in turn exert negative feedback effects on basal GH mRNA abundance, but not secretion.


Assuntos
Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Receptores da Somatotropina/metabolismo , Tilápia/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Jejum , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hipofisectomia , Masculino , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , RNA Mensageiro/genética , Receptores da Somatotropina/genética
5.
Development ; 140(21): 4445-51, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24130329

RESUMO

Forward genetic approaches in zebrafish have provided invaluable information about developmental processes. However, the relative difficulty of mapping and isolating mutations has limited the number of new genetic screens. Recent improvements in the annotation of the zebrafish genome coupled to a reduction in sequencing costs prompted the development of whole genome and RNA sequencing approaches for gene discovery. Here we describe a whole exome sequencing (WES) approach that allows rapid and cost-effective identification of mutations. We used our WES methodology to isolate four mutations that cause kidney cysts; we identified novel alleles in two ciliary genes as well as two novel mutants. The WES approach described here does not require specialized infrastructure or training and is therefore widely accessible. This methodology should thus help facilitate genetic screens and expedite the identification of mutants that can inform basic biological processes and the causality of genetic disorders in humans.


Assuntos
Cistos/genética , Análise Mutacional de DNA/métodos , Exoma/genética , Rim/patologia , Mutagênese/genética , Peixe-Zebra/genética , Animais , Ligação Genética , Microscopia Confocal , Oligonucleotídeos/genética
6.
J Exp Zool A Ecol Integr Physiol ; 341(7): 811-821, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38682316

RESUMO

California halibut (Paralichthys californicus) is a candidate species for aquaculture and stock enhancement. These applications rely on sex control, either to maximize the production of faster growing females or to match sex ratios in the wild. Other paralichthids exhibit temperature-dependent sex determination (TSD), but the presence and pattern of TSD is not well defined in California halibut. Juvenile California halibut were cultured at three distinct temperatures (15°C, 19°C, and 23°C) through the developmental period presumed to be thermosensitive based on findings from congeners. Sex ratios were quantified in each treatment using phenotypic sex identification techniques applied early (molecular biomarkers; 51-100 mm total length [TL]) and late (visual examination of the gonads; ≥100 mm TL) in the juvenile phase. Both techniques indicated similar sex determination trends at each temperature, with overall sex ratios assessed as 49.9% male at 15°C, 74.5% male at 19°C, and 98.2% male at 23°C. Growth rates were highest at 23°C and lowest at 15°C, with intrinsically fast- and slow-growing individuals at all temperatures. At 15°C and 19°C, females comprised a higher proportion among the fast growers than they did among the slow growers. These data show that California halibut exhibit TSD, with temperatures of 19°C and 23°C masculinizing fish while 15°C appears to produce a 1:1 sex ratio. This study will help optimize sex ratios and growth in hatcheries through thermal manipulation. Furthermore, the developed biomolecular tools and identified temperature thresholds will be important in future work to understand the influence of global warming on wild population demographics.


Assuntos
Linguado , Processos de Determinação Sexual , Razão de Masculinidade , Temperatura , Animais , Feminino , Masculino , Linguado/crescimento & desenvolvimento , Linguado/fisiologia , Processos de Determinação Sexual/fisiologia
7.
J Endocrinol ; 253(1): 13-25, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35034892

RESUMO

Leptin, insulin, and glucagon are involved in regulating glycaemia in vertebrates and play a role in the progression of obesity and type 2 diabetes. While mammals possess an 'adipoinsular axis' whereby insulin stimulates leptin release from adipocytes and leptin in turn feeds back on the pancreas to inhibit further insulin secretion, evidence of such an axis in non-mammalian vertebrates is unknown. We investigated the interactions between these glycaemic hormones and provide evidence for a leptin-insulin axis in a teleost fish, the tilapia. In the first study, we exposed hepatocytes to various concentrations of either insulin or glucagon to determine effects on leptin a (lepa) and then examined this in vivo with i.p. injections of both hormones. We also exposed isolated Brockmann bodies (pancreatic islets) to recombinant tilapia leptin A (rtLepA) and again followed this up with an i.p. injection to examine changes in insulin a and glucagon b. We found that glucagon increases lepa in vitroand in vivo, with the latter being 18-fold higher than saline-injected controls; however, the effects of rtLepA on glub were more variable. Insulin increased lepa by 2.5-fold in vitro and 70-fold in vivo, while rtLepA decreased insa at basal and increased it at high glucose concentrations. These data indicate that a leptin-insulin axis may be conserved among vertebrates and is thus essential for regulating nutrient balance but that the relationship is likely much more dynamic in teleosts as glycaemia is not as tightly regulated as it is in mammals.


Assuntos
Proteínas de Peixes/genética , Insulina/genética , Leptina/genética , Transdução de Sinais/genética , Tilápia/genética , Animais , Glicemia/metabolismo , Células Cultivadas , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Glucagon/genética , Glucagon/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Insulina/metabolismo , Secreção de Insulina , Leptina/metabolismo , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tilápia/metabolismo , Fatores de Tempo
8.
Biomolecules ; 12(4)2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35454105

RESUMO

Leptin is a pleiotropic hormone known for regulating appetite and metabolism. To characterize the role of leptin signaling in rainbow trout, we used CRISPR/Cas9 genome editing to disrupt the leptin receptor (LepR) genes, lepra1 and lepra2. We compared wildtype (WT) and mutant fish that were either fed to satiation or feed deprived for six weeks. The LepR mutants exhibited a hyperphagic phenotype, which led to heavier body weight, faster specific growth rate, increased viscero- and hepatosomatic indices, and greater condition factor. Muscle glycogen, plasma leptin, and leptin transcripts (lepa1) were also elevated in fed LepR mutant fish. Expression levels of several hypothalamic genes involved in feed regulation were analyzed (agrp, npy, orexin, cart-1, cart-2, pomc-a1, pomc-b). No differences were detected between fed WT and mutants except for pomc-b (proopiomelanocortin-b), where levels were 7.5-fold higher in LepR fed mutants, suggesting that pomc-b expression is regulated by leptin signaling. Fatty acid (FA) content did not statistically differ in muscle of fed mutant fish compared to WT. However, fasted mutants exhibited significantly lower muscle FA concentrations, suggesting that LepR mutants exhibit increased FA mobilization during fasting. These data demonstrate a key role for leptin signaling in lipid and energy mobilization in a teleost fish.


Assuntos
Leptina , Oncorhynchus mykiss , Animais , Jejum/fisiologia , Ácidos Graxos/metabolismo , Hiperfagia/genética , Leptina/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
9.
Integr Comp Biol ; 53(4): 755-65, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23946267

RESUMO

Environmental sex-determination (ESD) is the phenomenon by which environmental factors regulate sex-determination, typically occurring during a critical period of early development. Southern flounder (Paralichthys lethostigma) exhibit temperature-dependent sex-determination that appears to be restricted to the presumed XX female genotype with the extremes of temperature, both high and low, skewing sex ratios toward males. In order to evaluate other environmental factors that may influence sex-determination, we investigated the influence of background color and cortisol on sex-determination in southern flounder. Experiments involving three sets of tanks, each painted a different color, were conducted at different temperatures using southern flounder of mixed XX-XY genotype. The studies involved rearing juvenile southern flounder in either black, gray, or blue tanks and sex-determination was assessed by gonadal histology. In both studies, blue tanks showed significant male-biased sex ratios (95 and 75% male) compared with black and gray tanks. The stress corticosteroid cortisol may mediate sex-determining processes associated with environmental variables. Cortisol from the whole body was measured throughout the second experiment and fishes in blue tanks had higher levels of cortisol during the period of sex-determination. These data suggest that background color can be a cue for ESD, with blue acting as a stressor during the period of sex-determination, and ultimately producing male-skewed populations. In a separate study using XX populations of southern flounder, cortisol was applied at 0, 100, or 300 mg/kg of gelatin-coated feed. Fish were fed intermittently prior to, and just through, the period of sex-determination. Levels of gonadal P450 aromatase (cyp19a1) and forkhead transcription factor L2 (FoxL2) messenger RNA (mRNA) were measured by qRT-PCR as markers for differentiation into females. Müllerian-inhibiting substance mRNA was used as a marker of males' gonadal development. Control fish showed female-biased sex ratios approaching 100%, whereas treatment with 100 mg/kg cortisol produced 28.57% females and treatment with 300 mg/kg cortisol produced only 13.33% females. These results suggest that cortisol is a critical mediator of sex-determination in southern flounder by promoting masculinization. This linkage between the endocrine stress axis and conserved sex-determination pathways may provide a mechanism for adaptive modification of sex ratio in a spatially and temporally variable environment.


Assuntos
Cor , Meio Ambiente , Linguado/fisiologia , Hidrocortisona/farmacologia , Processos de Determinação Sexual/fisiologia , Análise de Variância , Animais , Hormônio Antimülleriano/genética , Sequência de Bases , Clonagem Molecular , Sinais (Psicologia) , Primers do DNA/genética , DNA Complementar/genética , Feminino , Fatores de Transcrição Forkhead/genética , Hidrocortisona/administração & dosagem , Hidrocortisona/metabolismo , Masculino , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Contagem de Cintilação , Análise de Sequência de DNA , Processos de Determinação Sexual/efeitos dos fármacos , Razão de Masculinidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA