RESUMO
Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.
Assuntos
Transdução de Sinais , Tromboplastina , Animais , Camundongos , Inflamação , Interferon-alfa , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Tromboplastina/genéticaRESUMO
Glomerular-tubular crosstalk within the kidney has been proposed, but the paracrine signals enabling this remain largely unknown. The cold-shock protein Y-box binding protein 1 (YBX1) is known to regulate inflammation and kidney diseases but its role in podocytes remains undetermined. Therefore, we analyzed mice with podocyte specific Ybx1 deletion (Ybx1ΔPod). Albuminuria was increased in unchallenged Ybx1ΔPod mice, which surprisingly was associated with reduced glomerular, but enhanced tubular damage. Tubular toll-like receptor 4 (TLR4) expression, node-like receptor protein 3 (NLRP3) inflammasome activation and kidney inflammatory cell infiltrates were all increased in Ybx1ΔPod mice. In vitro, extracellular YBX1 inhibited NLRP3 inflammasome activation in tubular cells. Co-immunoprecipitation, immunohistochemical analyses, microscale cell-free thermophoresis assays, and blunting of the YBX1-mediated TLR4-inhibition by a unique YBX1-derived decapeptide suggests a direct interaction of YBX1 and TLR4. Since YBX1 can be secreted upon post-translational acetylation, we hypothesized that YBX1 secreted from podocytes can inhibit TLR4 signaling in tubular cells. Indeed, mice expressing a non-secreted YBX1 variant specifically in podocytes (Ybx1PodK2A mice) phenocopied Ybx1ΔPod mice, demonstrating a tubular-protective effect of YBX1 secreted from podocytes. Lipopolysaccharide-induced tubular injury was aggravated in Ybx1ΔPod and Ybx1PodK2A mice, indicating a pathophysiological relevance of this glomerular-tubular crosstalk. Thus, our data show that YBX1 is physiologically secreted from podocytes, thereby negatively modulating sterile inflammation in the tubular compartment, apparently by binding to and inhibiting tubular TLR4 signaling. Hence, we have uncovered an YBX1-dependent molecular mechanism of glomerular-tubular crosstalk.
Assuntos
Nefropatias , Podócitos , Camundongos , Animais , Inflamassomos/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Resposta ao Choque Frio , Rim/metabolismo , Podócitos/metabolismo , Nefropatias/metabolismo , Inflamação/metabolismoRESUMO
Dysfunction of mesangial cells plays a major role in the pathogenesis of diabetic kidney disease (DKD), the leading cause of kidney failure. However, the underlying molecular mechanisms are incompletely understood. By unbiased gene expression analysis of glucose-exposed mesangial cells, we identified the transmembrane receptor CD248 as the most upregulated gene, and the maladaptive unfolded protein response (UPR) as one of the most stimulated pathways. Upregulation of CD248 was further confirmed in glucose-stressed mesangial cells in vitro, in kidney glomeruli isolated from diabetic mice (streptozotocin; STZ and db/db models, representing type 1 and type 2 diabetes mellitus, respectively) in vivo, and in glomerular kidney sections from patients with DKD. Time course analysis revealed that glomerular CD248 induction precedes the onset of albuminuria, mesangial matrix expansion and maladaptive UPR activation (hallmarked by transcription factor C/EBP homologous protein (CHOP) induction) but is paralleled by loss of the adaptive UPR regulator spliced X box binding protein (XBP1). Mechanistically, CD248 promoted maladaptive UPR signaling via inhibition of the inositol requiring enzyme 1α (IRE1α)-mediated transcription factor XBP1 splicing in vivo and in vitro. CD248 induced a multiprotein complex comprising heat shock protein 90, BH3 interacting domain death agonist (BID) and IRE1α, in which BID impedes IRE1α-mediated XBP1 splicing and induced CHOP mediated maladaptive UPR signaling. While CD248 knockout ameliorated DKD-associated glomerular dysfunction and reverses maladaptive unfolded protein response signaling, concomitant XBP1 deficiency abolished the protective effect in diabetic CD248 knockout mice, supporting a functional interaction of CD248 and XBP1 in vivo. Hence, CD248 is a novel mesangial cell receptor inducing maladaptive UPR signaling in DKD.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Animais , Camundongos , Antígenos CD/metabolismo , Antígenos de Neoplasias , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , HumanosRESUMO
RATIONALE: While thrombin is the key protease in thrombus formation, other coagulation proteases, such as fXa (factor Xa) or aPC (activated protein C), independently modulate intracellular signaling via partially distinct receptors. OBJECTIVES: To study the differential effects of fXa or fIIa (factor IIa) inhibition on gene expression and inflammation in myocardial ischemia-reperfusion injury. METHODS AND RESULTS: Mice were treated with a direct fIIa inhibitor (fIIai) or direct fXa inhibitor (fXai) at doses that induced comparable anticoagulant effects ex vivo and in vivo (tail-bleeding assay and FeCl3-induced thrombosis). Myocardial ischemia-reperfusion injury was induced via left anterior descending ligation. We determined infarct size and in vivo aPC generation, analyzed gene expression by RNA sequencing, and performed immunoblotting and ELISA. The signaling-only 3K3A-aPC variant and inhibitory antibodies that blocked all or only the anticoagulant function of aPC were used to determine the role of aPC. Doses of fIIai and fXai that induced comparable anticoagulant effects resulted in a comparable reduction in infarct size. However, unbiased gene expression analyses revealed marked differences, including pathways related to sterile inflammation and inflammasome regulation. fXai but not fIIai inhibited sterile inflammation by reducing the expression of proinflammatory cytokines (IL [interleukin]-1ß, IL-6, and TNFα [tumor necrosis factor alpha]), as well as NF-κB (nuclear factor kappa B) and inflammasome activation. This anti-inflammatory effect was associated with reduced myocardial fibrosis 28 days post-myocardial ischemia-reperfusion injury. Mechanistically, in vivo aPC generation was higher with fXai than with fIIai. Inhibition of the anticoagulant and signaling properties of aPC abolished the anti-inflammatory effect associated with fXai, while inhibiting only the anticoagulant function of aPC had no effect. Combining 3K3A-aPC with fIIai reduced the inflammatory response, mimicking the fXai-associated effect. CONCLUSIONS: We showed that specific inhibition of coagulation via direct oral anticoagulants had differential effects on gene expression and inflammation, despite comparable anticoagulant effects and infarct sizes. Targeting individual coagulation proteases induces specific cellular responses unrelated to their anticoagulant effect.
Assuntos
Anti-Inflamatórios/uso terapêutico , Inibidores do Fator Xa/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Proteína C/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Inibidores do Fator Xa/farmacologia , Inflamassomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Proteína C/farmacologiaRESUMO
Coagulation proteases have increasingly recognized functions beyond hemostasis and thrombosis. Disruption of activated protein C (aPC) or insulin signaling impair function of podocytes and ultimately cause dysfunction of the glomerular filtration barrier and diabetic kidney disease (DKD). We here show that insulin and aPC converge on a common spliced-X-box binding protein-1 (sXBP1) signaling pathway to maintain endoplasmic reticulum (ER) homeostasis. Analogous to insulin, physiological levels of aPC maintain ER proteostasis in DKD. Accordingly, genetically impaired protein C activation exacerbates maladaptive ER response, whereas genetic or pharmacological restoration of aPC maintains ER proteostasis in DKD models. Importantly, in mice with podocyte-specific deficiency of insulin receptor (INSR), aPC selectively restores the activity of the cytoprotective ER-transcription factor sXBP1 by temporally targeting INSR downstream signaling intermediates, the regulatory subunits of PI3Kinase, p85α and p85ß. Genome-wide mapping of condition-specific XBP1-transcriptional regulatory patterns confirmed that concordant unfolded protein response target genes are involved in maintenance of ER proteostasis by both insulin and aPC. Thus, aPC efficiently employs disengaged insulin signaling components to reconfigure ER signaling and restore proteostasis. These results identify ER reprogramming as a novel hormonelike function of coagulation proteases and demonstrate that targeting insulin signaling intermediates may be a feasible therapeutic approach ameliorating defective insulin signaling.
Assuntos
Coagulação Sanguínea , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Insulina/metabolismo , Peptídeo Hidrolases/metabolismo , Proteína C/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/metabolismo , Animais , Nefropatias Diabéticas/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Trombomodulina/metabolismo , Resposta a Proteínas não Dobradas/genéticaRESUMO
Cytoprotection by activated protein C (aPC) after ischemia-reperfusion injury (IRI) is associated with apoptosis inhibition. However, IRI is hallmarked by inflammation, and hence, cell-death forms disjunct from immunologically silent apoptosis are, in theory, more likely to be relevant. Because pyroptosis (ie, cell death resulting from inflammasome activation) is typically observed in IRI, we speculated that aPC ameliorates IRI by inhibiting inflammasome activation. Here we analyzed the impact of aPC on inflammasome activity in myocardial and renal IRIs. aPC treatment before or after myocardial IRI reduced infarct size and Nlrp3 inflammasome activation in mice. Kinetic in vivo analyses revealed that Nlrp3 inflammasome activation preceded myocardial injury and apoptosis, corroborating a pathogenic role of the Nlrp3 inflammasome. The constitutively active Nlrp3A350V mutation abolished the protective effect of aPC, demonstrating that Nlrp3 suppression is required for aPC-mediated protection from IRI. In vitro aPC inhibited inflammasome activation in macrophages, cardiomyocytes, and cardiac fibroblasts via proteinase-activated receptor 1 (PAR-1) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Accordingly, inhibiting PAR-1 signaling, but not the anticoagulant properties of aPC, abolished the ability of aPC to restrict Nlrp3 inflammasome activity and tissue damage in myocardial IRI. Targeting biased PAR-1 signaling via parmodulin-2 restricted mTORC1 and Nlrp3 inflammasome activation and limited myocardial IRI as efficiently as aPC. The relevance of aPC-mediated Nlrp3 inflammasome suppression after IRI was corroborated in renal IRI, where the tissue protective effect of aPC was likewise dependent on Nlrp3 inflammasome suppression. These studies reveal that aPC protects from IRI by restricting mTORC1-dependent inflammasome activation and that mimicking biased aPC PAR-1 signaling using parmodulins may be a feasible therapeutic approach to combat IRI.
Assuntos
Inflamassomos/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína C/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Animais Recém-Nascidos , Anticoagulantes/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Immunoblotting , Inflamassomos/metabolismo , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Substâncias Protetoras/farmacologia , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Traumatismo por Reperfusão/metabolismoRESUMO
Established therapies for diabetic nephropathy (dNP) delay but do not prevent its progression. The shortage of established therapies may reflect the inability to target the tubular compartment. The chemical chaperone tauroursodeoxycholic acid (TUDCA) ameliorates maladaptive endoplasmic reticulum (ER) stress signaling and experimental dNP. Additionally, TUDCA activates the farnesoid X receptor (FXR), which is highly expressed in tubular cells. We hypothesized that TUDCA ameliorates maladaptive ER signaling via FXR agonism specifically in tubular cells. Indeed, TUDCA induced expression of FXR-dependent genes (SOCS3 and DDAH1) in tubular cells but not in other renal cells. In vivo, TUDCA reduced glomerular and tubular injury in db/db and diabetic endothelial nitric oxide synthase-deficient mice. FXR inhibition with Z-guggulsterone or vivo-morpholino targeting of FXR diminished the ER-stabilizing and renoprotective effects of TUDCA. Notably, these in vivo approaches abolished tubular but not glomerular protection by TUDCA. Combined intervention with TUDCA and the angiotensin-converting enzyme inhibitor enalapril in 16-week-old db/db mice reduced albuminuria more efficiently than did either treatment alone. Although both therapies reduced glomerular damage, only TUDCA ameliorated tubular damage. Thus, interventions that specifically protect the tubular compartment in dNP, such as FXR agonism, may provide renoprotective effects on top of those achieved by inhibiting angiotensin-converting enzyme.
Assuntos
Nefropatias Diabéticas/prevenção & controle , Túbulos Renais , Receptores Citoplasmáticos e Nucleares/agonistas , Ácido Tauroquenodesoxicólico/uso terapêutico , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Coagulation factor XII (FXII) conveys various functions as an active protease that promotes thrombosis and inflammation, and as a zymogen via surface receptors like urokinase-type plasminogen activator receptor (uPAR). While plasma levels of FXII are increased in diabetes mellitus and diabetic kidney disease (DKD), a pathogenic role of FXII in DKD remains unknown. Here we show that FXII is locally expressed in kidney tubular cells and that urinary FXII correlates with kidney dysfunction in DKD patients. F12-deficient mice (F12-/-) are protected from hyperglycemia-induced kidney injury. Mechanistically, FXII interacts with uPAR on tubular cells promoting integrin ß1-dependent signaling. This signaling axis induces oxidative stress, persistent DNA damage and senescence. Blocking uPAR or integrin ß1 ameliorates FXII-induced tubular cell injury. Our findings demonstrate that FXII-uPAR-integrin ß1 signaling on tubular cells drives senescence. These findings imply previously undescribed diagnostic and therapeutic approaches to detect or treat DKD and possibly other senescence-associated diseases.
Assuntos
Senescência Celular , Nefropatias Diabéticas , Fator XII , Integrina beta1 , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Animais , Feminino , Humanos , Masculino , Camundongos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Fator XII/metabolismo , Fator XII/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Transdução de SinaisRESUMO
Diabetic kidney disease (DKD) is an emerging pandemic, paralleling the worldwide increase in obesity and diabetes mellitus. DKD is now the most frequent cause of end-stage renal disease and is associated with an excessive risk of cardiovascular morbidity and mortality. DKD is a consequence of systemic endothelial dysfunction. The endothelial-dependent cytoprotective coagulation protease activated protein C (aPC) ameliorates glomerular damage in DKD, in part by reducing mitochondrial ROS generation in glomerular cells. Whether aPC reduces mitochondrial ROS generation in the tubular compartment remains unknown. Here, we conducted expression profiling of kidneys in diabetic mice (wild-type and mice with increased plasma levels of aPC, APChigh mice). The top induced pathways were related to metabolism and in particular to oxidoreductase activity. In tubular cells, aPC maintained the expression of genes related to the electron transport chain, PGC1-α expression, and mitochondrial mass. These effects were associated with reduced mitochondrial ROS generation. Likewise, NLRP3 inflammasome activation and sterile inflammation, which are known to be linked to excess ROS generation in DKD, were reduced in diabetic APChigh mice. Thus, aPC reduces mitochondrial ROS generation in tubular cells and dampens the associated renal sterile inflammation. These studies support approaches harnessing the cytoprotective effects of aPC in DKD.
Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/etiologia , Inflamação/complicações , Rim/metabolismo , Camundongos , Proteína C , Espécies Reativas de Oxigênio/metabolismoRESUMO
Diabetes mellitus is hallmarked by accelerated atherosclerosis, a major cause of mortality among patients with diabetes. Efficient therapies for diabetes-associated atherosclerosis are absent. Accelerated atherosclerosis in diabetic patients is associated with reduced endothelial thrombomodulin (TM) expression and impaired activated protein C (aPC) generation. Here, we directly compared the effects of high glucose and oxidized LDL, revealing that high glucose induced more pronounced responses in regard to maladaptive unfolded protein response (UPR), senescence, and vascular endothelial cell barrier disruption. Ex vivo, diabetic ApoE-/- mice displayed increased levels of senescence and UPR markers within atherosclerotic lesions compared with nondiabetic ApoE-/- mice. Activated protein C pretreatment maintained barrier permeability and prevented glucose-induced expression of senescence and UPR markers in vitro. These data suggest that high glucose-induced maladaptive UPR and associated senescence promote vascular endothelial cell dysfunction, which-however-can be reversed by aPC. Taken together, current data suggest that reversal of glucose-induced vascular endothelial cell dysfunction is feasible.
Assuntos
Aterosclerose , Diabetes Mellitus , Estresse do Retículo Endoplasmático , Animais , Aterosclerose/etiologia , Aterosclerose/fisiopatologia , Senescência Celular , Glucose/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Proteína CRESUMO
Diabetes mellitus, which is largely driven by nutritional and behavioral factors, is characterized by accelerated atherosclerosis with impaired plaque stability. Atherosclerosis and associated complications are the major cause of mortality in diabetic patients. Efficient therapeutic concepts for diabetes-associated atherosclerosis are lacking. Atherosclerosis among diabetic patients is associated with reduced endothelial thrombomodulin (TM) expression and impaired activated protein C (aPC) generation. Here, we demonstrate that atherosclerotic plaque stability is reduced in hyperglycemic mice expressing dysfunctional TM (TMPro/Pro mice), which have a pro-coagulant phenotype due to impaired thrombin inhibition and markedly reduced aPC generation. The vessel lumen and plaque size of atherosclerotic lesions in the truncus brachiocephalic were decreased in diabetic TMPro/Pro ApoE-/- mice compared to diabetic ApoE-/- mice. While lipid accumulation in lesions of diabetic TMPro/Pro ApoE-/- mice was lower than that in diabetic ApoE-/- mice, morphometric analyses revealed more prominent signs of instable plaques, such as a larger necrotic core area and decreased fibrous cap thickness in diabetic TMPro/Pro ApoE-/- mice. Congruently, more macrophages and fewer smooth muscle cells were observed within lesions of diabetic TMPro/Pro ApoE-/- mice. Thus, impaired TM function reduces plaque stability, a characteristic of hyperglycemia-associated plaques, thus suggesting the crucial role of impaired TM function in mediating diabetes-associated atherosclerosis.
Assuntos
Aterosclerose , Diabetes Mellitus , Placa Aterosclerótica , Trombofilia , Animais , Aterosclerose/metabolismo , Diabetes Mellitus/patologia , Humanos , Camundongos , Camundongos Knockout para ApoE , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/complicaçõesRESUMO
A major obstacle in diabetes is the metabolic or hyperglycemic memory, which lacks specific therapies. Here we show that glucose-mediated changes in gene expression largely persist in diabetic kidney disease (DKD) despite reversing hyperglycemia. The senescence-associated cyclin-dependent kinase inhibitor p21 (Cdkn1a) was the top hit among genes persistently induced by hyperglycemia and was associated with induction of the p53-p21 pathway. Persistent p21 induction was confirmed in various animal models, human samples and in vitro models. Tubular and urinary p21-levels were associated with DKD severity and remained elevated despite improved blood glucose levels in humans. Mechanistically, sustained tubular p21 expression in DKD is linked to demethylation of its promoter and reduced DNMT1 expression. Two disease resolving agents, protease activated protein C (3K3A-aPC) and parmodulin-2, reversed sustained tubular p21 expression, tubular senescence, and DKD. Thus, p21-dependent tubular senescence is a pathway contributing to the hyperglycemic memory, which can be therapeutically targeted.
Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Diabetes Mellitus , Nefropatias Diabéticas , Hiperglicemia , Animais , Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Diabetes Mellitus/patologia , Nefropatias Diabéticas/patologia , Humanos , Hiperglicemia/patologia , RimRESUMO
Placental insufficiency jeopardizes prenatal development, potentially leading to intrauterine growth restriction (IUGR) and stillbirth. Surviving fetuses are at an increased risk for chronic diseases later in life. IUGR is closely linked with altered trophoblast and placental differentiation. However, due to a paucity of mechanistic insights, suitable biomarkers and specific therapies for IUGR are lacking. The transcription factor p45 NF-E2 (nuclear factor erythroid derived 2) has been recently found to regulate trophoblast differentiation in mice. The absence of p45 NF-E2 in trophoblast cells causes IUGR and placental insufficiency in mice, but mechanistic insights are incomplete and the relevance of p45 NF-E2 for human syncytiotrophoblast differentiation remains unknown. Here we show that p45 NF-E2 negatively regulates human syncytiotrophoblast differentiation and is associated with IUGR in humans. Expression of p45 NF-E2 is reduced in human placentae complicated with IUGR compared with healthy controls. Reduced p45 NF-E2 expression is associated with increased syncytiotrophoblast differentiation, enhanced glial cells missing-1 (GCM1) acetylation and GCM1 desumoylation in IUGR placentae. Induction of syncytiotrophoblast differentiation in BeWo and primary villous trophoblast cells with 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP) reduces p45 NF-E2 expression. Of note, p45 NF-E2 knockdown is sufficient to increase syncytiotrophoblast differentiation and GCM1 expression. Loss of p45 NF-E2 using either approach resulted in CBP-mediated GCM1 acetylation and SENP-mediated GCM1 desumoylation, demonstrating that p45 NF-E2 regulates post-translational modifications of GCM1. Functionally, reduced p45 NF-E2 expression is associated with increased cell death and caspase-3 activation in vitro and in placental tissues samples. Overexpression of p45 NF-E2 is sufficient to repress GCM1 expression, acetylation and desumoylation, even in 8-Br-cAMP exposed BeWo cells. These results suggest that p45 NF-E2 negatively regulates differentiation and apoptosis activation of human syncytiotrophoblast by modulating GCM1 acetylation and sumoylation. These studies identify a new pathomechanism related to IUGR in humans and thus provide new impetus for future studies aiming to identify new biomarkers and/or therapies of IUGR.