Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mol Ecol ; 32(7): 1608-1628, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36596297

RESUMO

By evaluating genetic variation across the entire genome, one can address existing questions in a novel way while raising new ones. The latter includes how different local environments influence adaptive and neutral genomic variation within and among populations, providing insights into local adaptation of natural populations and their responses to global change. Here, under a seascape genomic approach, ddRAD data of 4609 single nucleotide polymorphisms (SNPs) from 398 sardines (Sardina pilchardus) collected in 11 Mediterranean and one Atlantic site were generated. These were used along with oceanographic and ecological information to detect signals of adaptive divergence with gene flow across environmental gradients. The studied sardines constitute two clusters (FST  = 0.07), a pattern attributed to outlier loci, highlighting putative local adaptation. The trend in the number of days with sea surface temperature above 19°C, a critical threshold for successful sardine spawning, was crucial at all levels of population structuring with implications on the species' key biological processes. Outliers link candidate SNPs to the region's environmental heterogeneity. Our findings provide evidence for a dynamic equilibrium in which population structure is maintained by physical and ecological factors under the opposing influences of migration and selection. This dynamic in a natural system warrants continuous monitoring under a seascape genomic approach that might benefit from a temporal and more detailed spatial dimension. Our results may contribute to complementary studies aimed at providing deeper insights into the mechanistic processes underlying population structuring. Those are key to understanding and predicting future changes and responses of this highly exploited species in the face of climate change.


Assuntos
Genética Populacional , Genômica , Mar Mediterrâneo , Genoma , Adaptação Fisiológica/genética , Polimorfismo de Nucleotídeo Único/genética
2.
Nature ; 496(7445): 311-6, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23598338

RESUMO

The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.


Assuntos
Evolução Biológica , Peixes/classificação , Peixes/genética , Genoma/genética , Animais , Animais Geneticamente Modificados , Embrião de Galinha , Sequência Conservada/genética , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Extremidades/anatomia & histologia , Extremidades/crescimento & desenvolvimento , Peixes/anatomia & histologia , Peixes/fisiologia , Genes Homeobox/genética , Genômica , Imunoglobulina M/genética , Camundongos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Vertebrados/anatomia & histologia , Vertebrados/genética , Vertebrados/fisiologia
3.
BMC Genomics ; 15: 655, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25099474

RESUMO

BACKGROUND: Teleosts are characterized by a remarkable breadth of sexual mechanisms including various forms of hermaphroditism. Sparidae is a fish family exhibiting gonochorism or hermaphroditism even in closely related species. The sparid Diplodus puntazzo (sharpsnout seabream), exhibits rudimentary hermaphroditism characterized by intersexual immature gonads but single-sex mature ones. Apart from the intriguing reproductive biology, it is economically important with a continuously growing aquaculture in the Mediterranean Sea, but limited available genetic resources. Our aim was to characterize the expressed transcriptome of gonads and brains through RNA-Sequencing and explore the properties of genes that exhibit sex-biased expression profiles. RESULTS: Through RNA-Sequencing we obtained an assembled transcriptome of 82,331 loci. The expression analysis uncovered remarkable differences between male and female gonads, while male and female brains were almost identical. Focused search for known targets of sex determination and differentiation in vertebrates built the sex-specific expression profile of sharpsnout seabream. Finally, a thorough genetic marker discovery pipeline led to the retrieval of 85,189 SNPs and 29,076 microsatellites enriching the available genetic markers for this species. CONCLUSIONS: We obtained a nearly complete source of transcriptomic sequence as well as marker information for sharpsnout seabream, laying the ground for understanding the complex process of sex differentiation of this economically valuable species. The genes involved include known candidates from other vertebrate species, suggesting a conservation of the toolkit between gonochorists and hermaphrodites.


Assuntos
Transtornos do Desenvolvimento Sexual/genética , Perfilação da Expressão Gênica , Dourada/genética , Caracteres Sexuais , Animais , Encéfalo/metabolismo , Feminino , Masculino , Ovário/metabolismo , Processos de Determinação Sexual/genética , Diferenciação Sexual/genética , Testículo/metabolismo
4.
Genome Biol Evol ; 16(4)2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38648507

RESUMO

Conserved noncoding elements in vertebrates are enriched around transcription factor loci associated with development. However, loss and rapid divergence of conserved noncoding elements has been reported in teleost fish, albeit taking only few genomes into consideration. Taking advantage of the recent increase in high-quality teleost genomes, we focus on studying the evolution of teleost conserved noncoding elements, carrying out targeted genomic alignments and comparisons within the teleost phylogeny to detect conserved noncoding elements and reconstruct the ancestral teleost conserved noncoding elements repertoire. This teleost-centric approach confirms previous observations of extensive vertebrate conserved noncoding elements loss early in teleost evolution, but also reveals massive conserved noncoding elements gain in the teleost stem-group over 300 million years ago. Using synteny-based association to link conserved noncoding elements to their putatively regulated target genes, we show the most teleost gained conserved noncoding elements are found in the vicinity of orthologous loci involved in transcriptional regulation and embryonic development that are also associated with conserved noncoding elements in other vertebrates. Moreover, teleost and vertebrate conserved noncoding elements share a highly similar motif and transcription factor binding site vocabulary. We suggest that early teleost conserved noncoding element gains reflect a restructuring of the ancestral conserved noncoding element repertoire through both extreme divergence and de novo emergence. Finally, we support newly identified pan-teleost conserved noncoding elements have potential for accurate resolution of teleost phylogenetic placements in par with coding sequences, unlike ancestral only elements shared with spotted gar. This work provides new insight into conserved noncoding element evolution with great value for follow-up work on phylogenomics, comparative genomics, and the study of gene regulation evolution in teleosts.


Assuntos
Sequência Conservada , Evolução Molecular , Peixes , Filogenia , Animais , Peixes/genética , Genoma , Sintenia
5.
Brief Bioinform ; 12(5): 474-84, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21712341

RESUMO

Recent development of deep sequencing technologies has facilitated de novo genome sequencing projects, now conducted even by individual laboratories. However, this will yield more and more genome sequences that are not well assembled, and will hinder thorough annotation when no closely related reference genome is available. One of the challenging issues is the identification of protein-coding sequences split into multiple unassembled genomic segments, which can confound orthology assignment and various laboratory experiments requiring the identification of individual genes. In this study, using the genome of a cartilaginous fish, Callorhinchus milii, as test case, we performed gene prediction using a model specifically trained for this genome. We implemented an algorithm, designated ESPRIT, to identify possible linkages between multiple protein-coding portions derived from a single genomic locus split into multiple unassembled genomic segments. We developed a validation framework based on an artificially fragmented human genome, improvements between early and recent mouse genome assemblies, comparison with experimentally validated sequences from GenBank, and phylogenetic analyses. Our strategy provided insights into practical solutions for efficient annotation of only partially sequenced (low-coverage) genomes. To our knowledge, our study is the first formulation of a method to link unassembled genomic segments based on proteomes of relatively distantly related species as references.


Assuntos
Quimera/genética , Genoma , Genômica/métodos , Fases de Leitura Aberta , Tubarões/genética , Algoritmos , Animais , Bases de Dados de Ácidos Nucleicos , Humanos , Camundongos , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA/métodos
6.
Mol Ecol ; 22(3): 650-69, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23057963

RESUMO

The study of parallel evolution facilitates the discovery of common rules of diversification. Here, we examine the repeated evolution of thick lips in Midas cichlid fishes (the Amphilophus citrinellus species complex)-from two Great Lakes and two crater lakes in Nicaragua-to assess whether similar changes in ecology, phenotypic trophic traits and gene expression accompany parallel trait evolution. Using next-generation sequencing technology, we characterize transcriptome-wide differential gene expression in the lips of wild-caught sympatric thick- and thin-lipped cichlids from all four instances of repeated thick-lip evolution. Six genes (apolipoprotein D, myelin-associated glycoprotein precursor, four-and-a-half LIM domain protein 2, calpain-9, GTPase IMAP family member 8-like and one hypothetical protein) are significantly underexpressed in the thick-lipped morph across all four lakes. However, other aspects of lips' gene expression in sympatric morphs differ in a lake-specific pattern, including the magnitude of differentially expressed genes (97-510). Generally, fewer genes are differentially expressed among morphs in the younger crater lakes than in those from the older Great Lakes. Body shape, lower pharyngeal jaw size and shape, and stable isotopes (δ(13)C and δ(15)N) differ between all sympatric morphs, with the greatest differentiation in the Great Lake Nicaragua. Some ecological traits evolve in parallel (those related to foraging ecology; e.g. lip size, body and head shape) but others, somewhat surprisingly, do not (those related to diet and food processing; e.g. jaw size and shape, stable isotopes). Taken together, this case of parallelism among thick- and thin-lipped cichlids shows a mosaic pattern of parallel and nonparallel evolution.


Assuntos
Evolução Biológica , Ciclídeos/anatomia & histologia , Ciclídeos/genética , Transcriptoma , Adaptação Biológica/genética , Animais , Isótopos de Carbono/análise , Nicarágua , Isótopos de Nitrogênio/análise , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA
7.
BMC Res Notes ; 15(1): 98, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255960

RESUMO

OBJECTIVE: The rapid progress in sequencing technology and related bioinformatics tools aims at disentangling diversity and conservation issues through genome analyses. The foremost challenges of the field involve coping with questions emerging from the swift development and application of new algorithms, as well as the establishment of standardized analysis approaches that promote transparency and transferability in research. RESULTS: Here, we present SnakeCube, an automated and containerized whole de novo genome assembly pipeline that runs within isolated, secured environments and scales for use in High Performance Computing (HPC) domains. SnakeCube was optimized for its performance and tested for its effectiveness with various inputs, highlighting its safe and robust universal use in the field.


Assuntos
Genoma , Software , Algoritmos , Biologia Computacional , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
8.
Front Genet ; 13: 1081760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704347

RESUMO

The meagre, Argyrosomus regius, has recently become a species of increasing economic interest for the Mediterranean aquaculture and there is ongoing work to boost production efficiency through selective breeding. Access to the complete genomic sequence will provide an essential resource for studying quantitative trait-associated loci and exploring the genetic diversity of different wild populations and aquaculture stocks in more detail. Here, we present the first complete genome for A. regius, produced through a combination of long and short read technologies and an efficient in-house developed pipeline for assembly and polishing. Scaffolding using previous linkage map data allowed us to reconstruct a chromosome level assembly with high completeness, complemented with gene annotation and repeat masking. The 696 Mb long assembly has an N50 = 27.87 Mb and an L50 = 12, with 92.85% of its length placed in 24 chromosomes. We use this new resource to study the evolution of the meagre genome and other Sciaenids, via a comparative analysis of 25 high-quality teleost genomes. Combining a rigorous investigation of gene duplications with base-wise conservation analysis, we identify candidate loci related to immune, fat metabolism and growth adaptations in the meagre. Following phylogenomic reconstruction, we show highly conserved synteny within Sciaenidae. In contrast, we report rapidly evolving syntenic rearrangements and gene copy changes in the sex-related dmrt1 neighbourhood in meagre and other members of the family. These novel genomic datasets and findings will add important new tools for aquaculture studies and greatly facilitate husbandry and breeding work in the species.

9.
Front Physiol ; 13: 1033445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388126

RESUMO

Background: Treatment with recombinant gonadotropin hormones (rGths), follicle-stimulating hormone (rFsh) and luteinizing hormone (rLh), was shown to induce and complete vitellogenesis to finally obtain viable eggs and larvae in the flathead grey mullet (Mugil cephalus), a teleost arrested at early stages of gametogenesis in intensive captivity conditions. This study aimed to investigate the transcriptomic changes that occur in the ovary of females during the rGths-induced vitellogenesis. Methods: Ovarian samples were collected through biopsies from the same five females at four stages of ovarian development. RNASeq libraries were constructed for all stages studied, sequenced on an Illumina HiSeq4000, and a de novo transcriptome was constructed. Differentially expressed genes (DEGs) were identified between stages and the functional properties of DEGs were characterized by comparison with the gene ontology and Kyoto Encyclopedia. An enrichment analysis of molecular pathways was performed. Results: The de novo transcriptome comprised 287,089 transcripts after filtering. As vitellogenesis progressed, more genes were significantly upregulated than downregulated. The rFsh application induced ovarian development from previtellogenesis to early-to-mid-vitellogenesis with associated pathways enriched from upregulated DEGs related to ovarian steroidogenesis and reproductive development, cholesterol metabolism, ovarian growth and differentiation, lipid accumulation, and cell-to-cell adhesion pathways. The application of rFsh and rLh at early-to-mid-vitellogenesis induced the growth of oocytes to late-vitellogenesis and, with it, the enrichment of pathways from upregulated DEGs related to the production of energy, such as the lysosomes activity. The application of rLh at late-vitellogenesis induced the completion of vitellogenesis with the enrichment of pathways linked with the switch from vitellogenesis to oocyte maturation. Conclusion: The DEGs and enriched molecular pathways described during the induced vitellogenesis of flathead grey mullet with rGths were typical of natural oogenesis reported for other fish species. Present results add new knowledge to the rGths action to further raise the possibility of using rGths in species that present similar reproductive disorders in aquaculture, the aquarium industry as well as the conservation of endangered species.

10.
Evol Dev ; 13(5): 448-59, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-23016906

RESUMO

The functional equivalence of Pax6/eyeless genes across distantly related animal phyla has been one of central findings on which evo-devo studies is based. In this study, we show that Pax4, in addition to Pax6, is a vertebrate ortholog of the fly eyeless gene (and its duplicate, twin of eyeless [toy] gene, unique to Insecta). Molecular phylogenetic trees published to date placed the Pax4 gene outside the Pax6/eyeless subgroup as if the Pax4 gene originated from a gene duplication before the origin of bilaterians. However, Pax4 genes had only been reported for mammals. Our molecular phylogenetic analysis, including previously unidentified teleost fish pax4 genes, equally supported two scenarios: one with the Pax4-Pax6 duplication early in vertebrate evolution and the other with this duplication before the bilaterian radiation. We then investigated gene compositions in the genomic regions containing Pax4 and Pax6, and identified (1) conserved synteny between these two regions, suggesting that the Pax4-Pax6 split was caused by a large-scale duplication and (2) its timing within early vertebrate evolution based on the duplication timing of the members of neighboring gene families. Our results are consistent with the so-called two-round genome duplications in early vertebrates. Overall, the Pax6/eyeless ortholog is merely part of a 2:2 orthology relationship between vertebrates (with Pax4 and Pax6) and the fly (with eyeless and toy). In this context, evolution of transcriptional regulation associated with the Pax4-Pax6 split is also discussed in light of the zebrafish pax4 expression pattern that is analyzed here for the first time.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Evolução Molecular , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição Box Pareados/genética , Filogenia , Proteínas Repressoras/genética , Proteínas de Peixe-Zebra/genética , Animais , Drosophila/genética , Proteínas do Olho/classificação , Proteínas do Olho/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto/genética , Proteínas de Homeodomínio/classificação , Proteínas de Homeodomínio/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/classificação , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/classificação , Proteínas Repressoras/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/classificação , Proteínas de Peixe-Zebra/metabolismo
11.
Pathogens ; 10(2)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494355

RESUMO

Wild fish assemblages that aggregate within commercial marine aquaculture sites for feeding and shelter have been considered as a primary source of pathogenic parasites vectored to farmed fish maintained in net pens at an elevated density. In order to evaluate whether Ceratothoa oestroides (Isopoda, Cymothoidae), a generalist and pestilent isopod that is frequently found in Adriatic and Greek stocks of farmed European sea bass (Dicentrarchus labrax), transfers between wild and farmed fish, a RAD-Seq (restriction-site-associated DNA sequencing)-mediated genetic screening approach was employed. The double-digest RAD-Seq of 310 C. oestroides specimens collected from farmed European sea bass (138) and different wild farm-aggregating fish (172) identified 313 robust SNPs that evidenced a close genetic relatedness between the "wild" and "farmed" genotypes. ddRAD-Seq proved to be an effective method for detecting the discrete genetic structuring of C. oestroides and genotype intermixing between two populations. The parasite prevalence in the farmed sea bass was 1.02%, with a mean intensity of 2.0 and mean abundance of 0.02, while in the wild fish, the prevalence was 8.1%; the mean intensity, 1.81; and the mean abundance, 0.15. Such differences are likely a consequence of human interventions during the farmed fish's rearing cycle that, nevertheless, did not affect the transfer of C. oestroides.

12.
Front Genet ; 12: 790850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956332

RESUMO

The Tetraodontidae family encompasses several species which attract scientific interest in terms of their ecology and evolution. The silver-cheeked toadfish (Lagocephalus sceleratus) is a well-known "invasive sprinter" that has invaded and spread, in less than a decade, throughout the Eastern and part of the Western Mediterranean Sea from the Red Sea through the Suez Canal. In this study, we built and analysed the first near-chromosome level genome assembly of L. sceleratus and explored its evolutionary landscape. Through a phylogenomic analysis, we positioned L. sceleratus closer to T. nigroviridis, compared to other members of the family, while gene family evolution analysis revealed that genes associated with the immune response have experienced rapid expansion, providing a genetic basis for studying how L. sceleratus is able to achieve highly successful colonisation. Moreover, we found that voltage-gated sodium channel (NaV 1.4) mutations previously connected to tetrodotoxin resistance in other pufferfishes are not found in L. sceleratus, highlighting the complex evolution of this trait. The high-quality genome assembly built here is expected to set the ground for future studies on the species biology.

13.
Gigascience ; 10(8)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34405237

RESUMO

High-performance computing (HPC) systems have become indispensable for modern marine research, providing support to an increasing number and diversity of users. Pairing with the impetus offered by high-throughput methods to key areas such as non-model organism studies, their operation continuously evolves to meet the corresponding computational challenges. Here, we present a Tier 2 (regional) HPC facility, operating for over a decade at the Institute of Marine Biology, Biotechnology, and Aquaculture of the Hellenic Centre for Marine Research in Greece. Strategic choices made in design and upgrades aimed to strike a balance between depth (the need for a few high-memory nodes) and breadth (a number of slimmer nodes), as dictated by the idiosyncrasy of the supported research. Qualitative computational requirement analysis of the latter revealed the diversity of marine fields, methods, and approaches adopted to translate data into knowledge. In addition, hardware and software architectures, usage statistics, policy, and user management aspects of the facility are presented. Drawing upon the last decade's experience from the different levels of operation of the Institute of Marine Biology, Biotechnology, and Aquaculture HPC facility, a number of lessons are presented; these have contributed to the facility's future directions in light of emerging distribution technologies (e.g., containers) and Research Infrastructure evolution. In combination with detailed knowledge of the facility usage and its upcoming upgrade, future collaborations in marine research and beyond are envisioned.


Assuntos
Metodologias Computacionais , Biologia Marinha , Aquicultura/métodos , Biotecnologia/métodos , Biologia Marinha/métodos , Software
14.
Evol Appl ; 13(3): 479-485, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32431730

RESUMO

Species distributions are rapidly changing as human globalization increasingly moves organisms to novel environments. In marine systems, species introductions are the result of a number of anthropogenic mechanisms, notably shipping, aquaculture/mariculture, the pet and bait trades, and the creation of canals. Marine invasions are a global threat to human and non-human populations alike and are often listed as one of the top conservation concerns worldwide, having ecological, evolutionary, and social ramifications. Evolutionary investigations of marine invasions can provide crucial insight into an introduced species' potential impacts in its new range, including: physiological adaptation and behavioral changes to exploit new environments; changes in resident populations, community interactions, and ecosystems; and severe reductions in genetic diversity that may limit evolutionary potential in the introduced range. This special issue focuses on current research advances in the evolutionary biology of marine invasions and can be broadly classified into a few major avenues of research: the evolutionary history of invasive populations, post-invasion reproductive changes, and the role of evolution in parasite introductions. Together, they demonstrate the value of investigating marine invasions from an evolutionary perspective, with benefits to both fundamental and applied evolutionary biology at local and broad scales.

15.
Commun Biol ; 2: 400, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31701028

RESUMO

Sparidae (Teleostei: Spariformes) are a family of fish constituted by approximately 150 species with high popularity and commercial value, such as porgies and seabreams. Although the phylogeny of this family has been investigated multiple times, its position among other teleost groups remains ambiguous. Most studies have used a single or few genes to decipher the phylogenetic relationships of sparids. Here, we conducted a thorough phylogenomic analysis using five recently available Sparidae gene-sets and 26 high-quality, genome-predicted teleost proteomes. Our analysis suggested that Tetraodontiformes (puffer fish, sunfish) are the closest relatives to sparids than all other groups used. By analytically comparing this result to our own previous contradicting finding, we show that this discordance is not due to different orthology assignment algorithms; on the contrary, we prove that it is caused by the increased taxon sampling of the present study, outlining the great importance of this aspect in phylogenomic analyses in general.


Assuntos
Perciformes/classificação , Perciformes/genética , Algoritmos , Animais , Bases de Dados Genéticas , Filogenia , Proteoma/genética , Transcriptoma
16.
BMC Res Notes ; 12(1): 813, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852508

RESUMO

OBJECTIVES: We report a transcriptome acquisition for the bath sponge Spongia officinalis, a non-model marine organism that hosts rich symbiotic microbial communities. To this end, a pipeline was developed to efficiently separate between bacterial expressed genes from those of eukaryotic origin. The transcriptome was produced to support the assessment of gene expression and, thus, the response of the sponge, to elevated temperatures, replicating conditions currently occurring in its native habitat. DATA DESCRIPTION: We describe the assembled transcriptome along with the bioinformatic pipeline used to discriminate between signals of metazoan and prokaryotic origin. The pipeline involves standard read pre-processing steps and incorporates extra analyses to identify and filter prokaryotic reads out of the analysis. The proposed pipeline can be followed to overcome the technical RNASeq problems characteristic for symbiont-rich metazoan organisms with low or non-existent tissue differentiation, such as sponges and cnidarians. At the same time, it can be valuable towards the development of approaches for parallel transcriptomic studies of symbiotic communities and the host.


Assuntos
Microbiota/genética , Poríferos/genética , Simbiose/genética , Transcriptoma/genética , Animais , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Biologia Computacional , Grécia , Filogenia , Poríferos/microbiologia , RNA Ribossômico/genética , RNA-Seq/métodos
17.
Front Genet ; 10: 675, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447879

RESUMO

Gilthead sea bream (Sparus aurata) is a teleost of considerable economic importance in Southern European aquaculture. The aquaculture industry shows a growing interest in the application of genetic methods that can locate phenotype-genotype associations with high economic impact. Through selective breeding, the aquaculture industry can exploit this information to maximize the financial yield. Here, we present a Genome Wide Association Study (GWAS) of 112 samples belonging to seven different sea bream families collected from a Greek commercial aquaculture company. Through double digest Random Amplified DNA (ddRAD) Sequencing, we generated a per-sample genetic profile consisting of 2,258 high-quality Single Nucleotide Polymorphisms (SNPs). These profiles were tested for association with four phenotypes of major financial importance: Fat, Weight, Tag Weight, and the Length to Width ratio. We applied two methods of association analysis. The first is the typical single-SNP to phenotype test, and the second is a feature selection (FS) method through two novel algorithms that are employed for the first time in aquaculture genomics and produce groups with multiple SNPs associated to a phenotype. In total, we identified 9 single SNPs and 6 groups of SNPs associated with weight-related phenotypes (Weight and Tag Weight), 2 groups associated with Fat, and 16 groups associated with the Length to Width ratio. Six identified loci (Chr4:23265532, Chr6:12617755, Chr:8:11613979, Chr13:1098152, Chr15:3260819, and Chr22:14483563) were present in genes associated with growth in other teleosts or even mammals, such as semaphorin-3A and neurotrophin-3. These loci are strong candidates for future studies that will help us unveil the genetic mechanisms underlying growth and improve the sea bream aquaculture productivity by providing genomic anchors for selection programs.

18.
Front Genet ; 9: 749, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713551

RESUMO

Sex-biased gene expression is the mode through which sex dimorphism arises from a nearly identical genome, especially in organisms without genetic sex determination. Teleost fishes show great variations in the way the sex phenotype forms. Among them, Sparidae, that might be considered as a model family displays a remarkable diversity of reproductive modes. In this study, we sequenced and analyzed the sex-biased transcriptome in gonads and brain (the tissues with the most profound role in sexual development and reproduction) of two sparids with different reproductive modes: the gonochoristic common dentex, Dentex dentex, and the protandrous hermaphrodite gilthead seabream, Sparus aurata. Through comparative analysis with other protogynous and rudimentary protandrous sparid transcriptomes already available, we put forward common male and female-specific genes and pathways that are probably implicated in sex-maintenance in this fish family. Our results contribute to the understanding of the complex processes behind the establishment of the functional sex, especially in hermaphrodite species and set the groundwork for future experiments by providing a gene toolkit that can improve efforts to control phenotypic sex in finfish in the ever-increasingly important field of aquaculture.

19.
Commun Biol ; 1: 119, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271999

RESUMO

Sexual dimorphism is a fascinating subject in evolutionary biology and mostly results from sex-biased expression of genes, which have been shown to evolve faster in gonochoristic species. We report here genome and sex-specific transcriptome sequencing of Sparus aurata, a sequential hermaphrodite fish. Evolutionary comparative analysis reveals that sex-biased genes in S. aurata are similar in number and function, but evolved following strikingly divergent patterns compared with gonochoristic species, showing overall slower rates because of stronger functional constraints. Fast evolution is observed only for highly ovary-biased genes due to female-specific patterns of selection that are related to the peculiar reproduction mode of S. aurata, first maturing as male, then as female. To our knowledge, these findings represent the first genome-wide analysis on sex-biased loci in a hermaphrodite vertebrate species, demonstrating how having two sexes in the same individual profoundly affects the fate of a large set of evolutionarily relevant genes.

20.
Genome Biol Evol ; 9(11): 3122-3136, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069363

RESUMO

Lateralized behavior ("handedness") is unusual, but consistently found across diverse animal lineages, including humans. It is thought to reflect brain anatomical and/or functional asymmetries, but its neuro-molecular mechanisms remain largely unknown. Lake Tanganyika scale-eating cichlid fish, Perissodus microlepis show pronounced asymmetry in their jaw morphology as well as handedness in feeding behavior-biting scales preferentially only from one or the other side of their victims. This makes them an ideal model in which to investigate potential laterality in neuroanatomy and transcription in the brain in relation to behavioral handedness. After determining behavioral handedness in P. microlepis (preferred attack side), we estimated the volume of the hemispheres of brain regions and captured their gene expression profiles. Our analyses revealed that the degree of behavioral handedness is mirrored at the level of neuroanatomical asymmetry, particularly in the tectum opticum. Transcriptome analyses showed that different brain regions (tectum opticum, telencephalon, hypothalamus, and cerebellum) display distinct expression patterns, potentially reflecting their developmental interrelationships. For numerous genes in each brain region, their extent of expression differences between hemispheres was found to be correlated with the degree of behavioral lateralization. Interestingly, the tectum opticum and telencephalon showed divergent biases on the direction of up- or down-regulation of the laterality candidate genes (e.g., grm2) in the hemispheres, highlighting the connection of handedness with gene expression profiles and the different roles of these brain regions. Hence, handedness in predation behavior may be caused by asymmetric size of brain hemispheres and also by lateralized gene expressions in the brain.


Assuntos
Encéfalo/fisiologia , Ciclídeos/fisiologia , Lateralidade Funcional , Animais , Encéfalo/anatomia & histologia , Ciclídeos/anatomia & histologia , Ciclídeos/genética , Comportamento Alimentar , Perfilação da Expressão Gênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA