Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Physiol ; 168(1): 18-28, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25783412

RESUMO

The cuticle is a ubiquitous, predominantly waxy layer on the aerial parts of higher plants that fulfils a number of essential physiological roles, including regulating evapotranspiration, light reflection, and heat tolerance, control of development, and providing an essential barrier between the organism and environmental agents such as chemicals or some pathogens. The structure and composition of the cuticle are closely associated but are typically investigated separately using a combination of structural imaging and biochemical analysis of extracted waxes. Recently, techniques that combine stain-free imaging and biochemical analysis, including Fourier transform infrared spectroscopy microscopy and coherent anti-Stokes Raman spectroscopy microscopy, have been used to investigate the cuticle, but the detection sensitivity is severely limited by the background signals from plant pigments. We present a new method for label-free, in vivo structural and biochemical analysis of plant cuticles based on stimulated Raman scattering (SRS) microscopy. As a proof of principle, we used SRS microscopy to analyze the cuticles from a variety of plants at different times in development. We demonstrate that the SRS virtually eliminates the background interference compared with coherent anti-Stokes Raman spectroscopy imaging and results in label-free, chemically specific confocal images of cuticle architecture with simultaneous characterization of cuticle composition. This innovative use of the SRS spectroscopy may find applications in agrochemical research and development or in studies of wax deposition during leaf development and, as such, represents an important step in the study of higher plant cuticles.


Assuntos
Microscopia/métodos , Epiderme Vegetal/química , Plantas/química , Análise Espectral Raman/métodos , Ceras/química , Epiderme Vegetal/ultraestrutura , Folhas de Planta/química
2.
Anal Chem ; 85(10): 5055-63, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23581493

RESUMO

The growing world population puts ever-increasing demands on the agricultural and agrochemical industries to increase agricultural yields. This can only be achieved by investing in fundamental plant and agrochemical research and in the development of improved analytical tools to support research in these areas. There is currently a lack of analytical tools that provide noninvasive structural and chemical analysis of plant tissues at the cellular scale. Imaging techniques such as coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microscopy provide label-free chemically specific image contrast based on vibrational spectroscopy. Over the past decade, these techniques have been shown to offer clear advantages for a vast range of biomedical research applications. The intrinsic vibrational contrast provides label-free quantitative functional analysis, it does not suffer from photobleaching, and it allows near real-time imaging in 3D with submicrometer spatial resolution. However, due to the susceptibility of current detection schemes to optical absorption and fluorescence from pigments (such as chlorophyll), the plant science and agrochemical research communities have not been able to benefit from these techniques and their application in plant research has remained virtually unexplored. In this paper, we explore the effect of chlorophyll fluorescence and absorption in CARS and SRS microscopy. We show that with the latter it is possible to use phase-sensitive detection to separate the vibrational signal from the (electronic) absorption processes. Finally, we demonstrate the potential of SRS for a range of in planta applications by presenting in situ chemical analysis of plant cell wall components, epicuticular waxes, and the deposition of agrochemical formulations onto the leaf surface.


Assuntos
Gossypium/química , Microscopia/métodos , Imagem Molecular/métodos , Análise Espectral Raman , Zea mays/química , Agroquímicos/análise , Parede Celular/química , Gossypium/citologia , Microscopia/instrumentação , Imagem Molecular/instrumentação , Folhas de Planta/química , Vibração , Ceras/química , Zea mays/citologia
3.
J Anat ; 220(4): 405-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22332832

RESUMO

Multi-modal multiphoton microscopy was used to investigate tissue microstructure in the zone of calcified cartilage, focussing on the collagen fibre organisation at the tidemark and cement line. Thick, unstained and unfixed sagittal sections were prepared from the equine metacarpophalangeal joint. Second harmonic generation (SHG) provided contrast for collagen, two-photon fluorescence (TPF) for endogenous fluorophores, and coherent anti-Stokes Raman scattering (CARS) allowed the cells to be visualised. The structure of radial and calcified cartilage was found to vary with location across the joint, with the palma regions showing a more ordered parallel arrangement of collagen fibres than the cortical ridge and dorsal regions. These patterns may be associated with regional variations in joint loading. In addition, the cell lacunae had a greater diameter in the dorsal region than in the palmar region. At the cement line some collagen fibres were observed crossing between the calcified cartilage and the subchondral bone. At the tidemark the fibres were parallel and continuous between the radial and calcified cartilage. Beneath early superficial lesions the structure of the tidemark and calcified cartilage was disrupted with discontinuities and gaps in the fibrillar organisation. Cartilage microstructure varies in the deep zones between regions of different loading. The variations in collagen structure observed may be significant to the local mechanical properties of the cartilage and therefore may be important to its mechanical interactions with the subchondral bone. The calcified cartilage is altered even below early superficial lesions and therefore is important in the understanding of the aetiology of osteoarthritis.


Assuntos
Cartilagem Articular/anatomia & histologia , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Colágeno/análise , Cavalos , Articulação Metacarpofalângica/anatomia & histologia , Microscopia de Fluorescência por Excitação Multifotônica/métodos
4.
J Vis Exp ; (183)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35635465

RESUMO

Probing gold nanoparticles (AuNPs) in living systems is essential to reveal the interaction between AuNPs and biological tissues. Moreover, by integrating nonlinear optical signals such as stimulated Raman scattering (SRS), two-photon excited fluorescence (TPEF), and transient absorption (TA) into an imaging platform, it can be used to reveal biomolecular contrast of cellular structures and AuNPs in a multimodal manner. This article presents a multimodal nonlinear optical microscopy and applies it to perform chemically specific imaging of AuNPs in cancer cells. This imaging platform provides a novel approach for developing more efficient functionalized AuNPs and determining whether they are within vasculatures surrounding the tumor, pericellular, or cellular spaces.


Assuntos
Ouro , Nanopartículas Metálicas , Diagnóstico por Imagem , Nanopartículas Metálicas/química , Microscopia Óptica não Linear , Análise Espectral Raman
5.
Function (Oxf) ; 2(5): zqab037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34423304

RESUMO

Articular cartilage is a dense extracellular matrix-rich tissue that degrades following chronic mechanical stress, resulting in osteoarthritis (OA). The tissue has low intrinsic repair especially in aged and osteoarthritic joints. Here, we describe three pro-regenerative factors; fibroblast growth factor 2 (FGF2), connective tissue growth factor, bound to transforming growth factor-beta (CTGF-TGFß), and hepatoma-derived growth factor (HDGF), that are rapidly released from the pericellular matrix (PCM) of articular cartilage upon mechanical injury. All three growth factors bound heparan sulfate, and were displaced by exogenous NaCl. We hypothesised that sodium, sequestered within the aggrecan-rich matrix, was freed by injurious compression, thereby enhancing the bioavailability of pericellular growth factors. Indeed, growth factor release was abrogated when cartilage aggrecan was depleted by IL-1 treatment, and in severely damaged human osteoarthritic cartilage. A flux in free matrix sodium upon mechanical compression of cartilage was visualised by 23Na -MRI just below the articular surface. This corresponded to a region of reduced tissue stiffness, measured by scanning acoustic microscopy and second harmonic generation microscopy, and where Smad2/3 was phosphorylated upon cyclic compression. Our results describe a novel intrinsic repair mechanism, controlled by matrix stiffness and mediated by the free sodium concentration, in which heparan sulfate-bound growth factors are released from cartilage upon injurious load. They identify aggrecan as a depot for sequestered sodium, explaining why osteoarthritic tissue loses its ability to repair. Treatments that restore matrix sodium to allow appropriate release of growth factors upon load are predicted to enable intrinsic cartilage repair in OA. SIGNIFICANCE STATEMENT: Osteoarthritis is the most prevalent musculoskeletal disease, affecting 250 million people worldwide.1 We identify a novel intrinsic repair response in cartilage, mediated by aggrecan-dependent sodium flux, and dependent upon matrix stiffness, which results in the release of a cocktail of pro-regenerative growth factors after injury. Loss of aggrecan in late-stage osteoarthritis prevents growth factor release and likely contributes to disease progression. Treatments that restore matrix sodium in osteoarthritis may recover the intrinsic repair response to improve disease outcome.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Idoso , Agrecanas/metabolismo , Sódio/metabolismo , Osteoartrite/metabolismo , Cartilagem Articular/lesões , Fator de Crescimento Transformador beta/metabolismo , Heparitina Sulfato/metabolismo
6.
J R Soc Interface ; 16(150): 20180611, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30958161

RESUMO

Type II collagen fibril diameters in cartilage are beneath the diffraction limit of optical microscopy, which makes the assessment of collagen organization very challenging. In this work we use polarization sensitive second harmonic generation (P-SHG) imaging to map collagen organization in articular cartilage, addressing in particular its behaviour under strain and changes which occur in osteoarthritis. P-SHG yields two parameters, molecular order and orientation, which provide measures of the degree of organization both at the molecular scale (below the diffraction limit) and above a few hundred nanometres (at the image pixel size). P-SHG clearly demonstrates the zonal collagen architecture and reveals differences in the structure of the fibrils around chondrocytes. P-SHG also reveals sub-micron scale fibril re-organization in cartilage strips exposed to tensile loading, with an increase in local organization in the superficial zone which weakly correlates with tensile modulus. Finally, P-SHG is used to investigate osteoarthritic cartilage from total knee replacement surgery, and reveals widespread heterogeneity across samples both microscale fibril orientations and their sub-micron organization. By addressing collagen fibril structure on scales intermediate between conventional light and electron microscopy, this study provides new insights into collagen micromechanics and mechanisms of degradation.


Assuntos
Cartilagem Articular , Condrócitos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Animais , Cartilagem Articular/citologia , Cartilagem Articular/metabolismo , Bovinos , Condrócitos/citologia , Condrócitos/metabolismo , Microscopia
7.
J Biomed Opt ; 13(4): 044020, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19021348

RESUMO

Second harmonic generation (SHG) and two-photon fluorescence (TPF) microscopy is used to image the intercellular and pericellular matrix in normal and degenerate equine articular cartilage. The polarization sensitivity of SHG can be used directly to determine fiber orientation in the superficial 10 to 20 microm of tissue, and images of the ratio of intensities taken with two orthogonal polarization states reveal small scale variations in the collagen fiber organization that have not previously been reported. The signal from greater depths is influenced by the birefringence and biattenuance of the overlying tissue. An assessment of these effects is developed, based on the analysis of changes in TPF polarization with depth, and the approach is validated in tendon where composition is independent of depth. The analysis places an upper bound on the biattenuance of tendon of 2.65 x 10(-4). Normal cartilage reveals a consistent pattern of variation in fibril orientation with depth. In lesions, the pattern is severely disrupted and there are changes in the pericellular matrix, even at the periphery where the tissue appears microscopically normal. Quantification of polarization sensitivity changes with depth in cartilage will require detailed numerical models, but in the meantime, multiphoton microscopy provides sensitive indications of matrix changes in cartilage degeneration.


Assuntos
Doenças das Cartilagens/patologia , Cartilagem/ultraestrutura , Aumento da Imagem/instrumentação , Microscopia Confocal/instrumentação , Microscopia de Polarização/instrumentação , Animais , Desenho de Equipamento , Análise de Falha de Equipamento , Cavalos , Dinâmica não Linear , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
8.
Sci Rep ; 8(1): 6924, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720708

RESUMO

Terahertz-spectroscopy probes dynamics and spectral response of collective vibrational modes in condensed phase, which can yield insight into composition and topology. However, due to the long wavelengths employed (λ = 300 µm at 1THz), diffraction limited imaging is typically restricted to spatial resolutions around a millimeter. Here, we demonstrate a new form of subwavelength hyperspectral, polarization-resolved THz imaging which employs an optical pattern projected onto a 6 µm-thin silicon wafer to achieve near-field modulation of a co-incident THz pulse. By placing near-field scatterers, one can measure the interaction of object with the evanescent THz fields. Further, by measuring the temporal evolution of the THz field a sample's permittivity can be extracted with 65 µm spatial resolution due to the presence of evanescent fields. Here, we present the first application of this new approach to articular cartilage. We show that the THz permittivity in this material varies progressively from the superficial zone to the deep layer, and that this correlates with a change in orientation of the collagen fibrils that compose the extracellular matrix (ECM) of the tissue. Our approach enables direct interrogation of the sample's biophysical properties, in this case concerning the structure and permittivity of collagen fibrils and their anisotropic organisation in connective tissue.


Assuntos
Cartilagem Articular/química , Espectroscopia Terahertz , Algoritmos , Animais , Bovinos , Microscopia de Polarização , Modelos Teóricos , Espectroscopia Terahertz/métodos
9.
Biomech Model Mechanobiol ; 16(4): 1475-1484, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28378119

RESUMO

The complex structure of the annulus fibrosus is strongly related to its mechanical properties. Recent work showed that it is possible to observe the relative movement of fibre bundles in loaded cow tail annulus; the aim of this work was to describe and quantify annulus fibrosus micromechanics in degenerated human disc, and compare it with cow tail annulus, an animal model often used in the literature. Second harmonic generation was used to image the collagen matrix in twenty strips of annulus fibrosus harvested from intervertebral disc of seven patients undergoing surgery. Samples were loaded to 6% tensile strain in 1% steps. Elastic modulus was calculated from loading curves, and micromechanical strains were calculated from the images using custom software. The same protocol was applied to twenty strips of annulus harvested from cow tail discs. Significant morphological differences were found between human and cow tail samples, the most striking being the lack of collagen fibre crimp in the former. Fibres were also observed bending and running from one lamella to the other, forming a strong flexible interface. Interdigitation of fibre bundles was also present at this interface. Quantitative results show complex patterns of inter-bundle and inter-lamellar behaviour, with inter-bundle sliding being the main strain mechanism. Elastic modulus was similar between species, and it was not affected by the degree of degeneration. This work gives an insight into the complex structure and mechanical function of the annulus fibrosus, which should be accounted for in disc numerical modelling.


Assuntos
Anel Fibroso/patologia , Modelos Biológicos , Animais , Anel Fibroso/citologia , Anel Fibroso/ultraestrutura , Bovinos , Colágeno/análise , Módulo de Elasticidade , Humanos , Degeneração do Disco Intervertebral/patologia , Software
10.
Acta Biomater ; 63: 274-282, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28917706

RESUMO

Needle puncture of the intervertebral disc can initiate a mechanical and biochemical cascade leading to disc degeneration. Puncture's mechanical effects have been shown near the puncture site, mechanical effects should be observed far, relative to needle size, from the puncture site, given the disc-wide damage induced by the stab. The aim of this work was to quantify these far-field effects, and to observe the local structural damage provoked by the needle. Strips of cow tail annulus fibrosus underwent two consecutive mechanical loadings to 5% tensile strain; fifteen samples were punctured in a radial direction with a randomly assigned needle between the two loadings (needle gauges between 19 and 23). Ten samples (control group) were not punctured. During loading, the tissue strains were imaged using second harmonic generation microscopy in a <600×800µm region about 4.4mm from the puncture site. After mechanical testing, the puncture site was imaged in 3D. Puncture had no significant effect on annulus elastic modulus. Imaging showed a modest change in the shearing between fibre bundles however, the linear strain between bundles, intra-bundle shear and linear strain were not significantly affected. At the puncture site, detached lumps of tissue were present. These results suggest that the mechanical effects observed in intact discs are due to the depressurization of the disc, rather than the local damage to the annulus. Needle profiles could be designed, aiming at separating fibre bundles rather than cutting through them, to avoid leaving dying tissue behind. STATEMENT OF SIGNIFICANCE: Needle puncture of the intervertebral disc can initiate a mechanical and biochemical cascade leading to disc degeneration, but the link between the local damage of the puncture and the disc-wide effects is not well understood. This work aimed at determining the micro-mechanical effects of the puncture far from its site, and to observe the damage induced by the puncture with high resolution imaging. Results show that the puncture had modest effect far from the puncture, but lumps of tissue were left by the needle, detached from the disc; these could cause further damage through friction and inflammation of the surrounding tissues. This suggests that the cascade leading to degeneration is probably driven by a biochemical response rather than disc-wide mechanical effects.


Assuntos
Anel Fibroso/fisiologia , Agulhas , Animais , Fenômenos Biomecânicos , Bovinos , Módulo de Elasticidade , Imageamento Tridimensional
11.
Interface Focus ; 4(2): 20130058, 2014 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-24748954

RESUMO

Elastin is a major component of tissues such as lung and blood vessels, and endows them with the long-range elasticity necessary for their physiological functions. Recent research has revealed the complexity of these elastin structures and drawn attention to the existence of extensive networks of fine elastin fibres in tissues such as articular cartilage and the intervertebral disc. Nonlinear microscopy, allowing the visualization of these structures in living tissues, is informing analysis of their mechanical properties. Elastic fibres are complex in composition and structure containing, in addition to elastin, an array of microfibrillar proteins, principally fibrillin. Raman microspectrometry and X-ray scattering have provided new insights into the mechanisms of elasticity of the individual component proteins at the molecular and fibrillar levels, but more remains to be done in understanding their mechanical interactions in composite matrices. Elastic tissue is one of the most stable components of the extracellular matrix, but impaired mechanical function is associated with ageing and diseases such as atherosclerosis and diabetes. Efforts to understand these associations through studying the effects of processes such as calcium and lipid binding and glycation on the mechanical properties of elastin preparations in vitro have produced a confusing picture, and further efforts are required to determine the molecular basis of such effects.

12.
Front Plant Sci ; 5: 140, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795734

RESUMO

Plant leaves are optically complex, which makes them difficult to image by light microscopy. Careful sample preparation is therefore required to enable researchers to maximize the information gained from advances in fluorescent protein labeling, cell dyes and innovations in microscope technologies and techniques. We have previously shown that mounting leaves in the non-toxic, non-fluorescent perfluorocarbon (PFC), perfluorodecalin (PFD) enhances the optical properties of the leaf with minimal impact on physiology. Here, we assess the use of the PFCs, PFD, and perfluoroperhydrophenanthrene (PP11) for in vivo plant leaf imaging using four advanced modes of microscopy: laser scanning confocal microscopy (LSCM), two-photon fluorescence microscopy, second harmonic generation microscopy, and stimulated Raman scattering (SRS) microscopy. For every mode of imaging tested, we observed an improved signal when leaves were mounted in PFD or in PP11, compared to mounting the samples in water. Using an image analysis technique based on autocorrelation to quantitatively assess LSCM image deterioration with depth, we show that PP11 outperformed PFD as a mounting medium by enabling the acquisition of clearer images deeper into the tissue. In addition, we show that SRS microscopy can be used to image PFCs directly in the mesophyll and thereby easily delimit the "negative space" within a leaf, which may have important implications for studies of leaf development. Direct comparison of on and off resonance SRS micrographs show that PFCs do not to form intracellular aggregates in live plants. We conclude that the application of PFCs as mounting media substantially increases advanced microscopy image quality of living mesophyll and leaf vascular bundle cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA