RESUMO
The intestinal epithelium plays an essential role in nutrient absorption, hormone release, and barrier function. Maintenance of the epithelium is driven by continuous cell renewal by stem cells located in the intestinal crypts. The amount and type of diet influence this process and result in changes in the size and cellular make-up of the tissue. The mechanism underlying the nutrient-driven changes in proliferation is not known, but may involve a shift in intracellular metabolism that allows for more nutrients to be used to manufacture new cells. We hypothesized that nutrient availability drives changes in cellular energy metabolism of small intestinal epithelial crypts that could contribute to increases in crypt proliferation. We utilized primary small intestinal epithelial crypts from C57BL/6J mice to study (1) the effect of glucose on crypt proliferation and (2) the effect of glucose on crypt metabolism using an extracellular flux analyzer for real-time metabolic measurements. We found that glucose increased both crypt proliferation and glycolysis, and the glycolytic pathway inhibitor 2-deoxy-d-glucose (2-DG) attenuated glucose-induced crypt proliferation. Glucose did not enhance glucose oxidation, but did increase the maximum mitochondrial respiratory capacity, which may contribute to glucose-induced increases in proliferation. Glucose activated Akt/HIF-1α signaling pathway, which might be at least in part responsible for glucose-induced glycolysis and cell proliferation. These results suggest that high glucose availability induces an increase in crypt proliferation by inducing an increase in glycolysis with no change in glucose oxidation.
Assuntos
Proliferação de Células/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Glucose/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/metabolismoRESUMO
The small intestine is the main organ involved in the digestion and absorption of nutrients. It is in an ideal position to sense the availability of energy in the lumen in addition to its absorptive function. Consumption of a high-fat diet (HFD) influences the metabolic characteristics of the small intestine. Therefore, to better understand the metabolic features of the small intestine and their changes in response to dietary fat, we characterized the metabolism of duodenal, jejunal, and hepatic cell lines and assessed the metabolic changes in the enterocytes and the liver after short-term (3 days) or medium-term (14 days) HFD feeding in mice. Experiments with immortalized enterocytes indicated a higher glycolytic capacity in the duodenal cell line compared to the other two cell lines, whereas the jejunal cell line exhibited a high oxidative metabolism. Short-term HFD feeding induced changes in the expression of glucose and lipid metabolism-related genes in the duodenum and the jejunum of mice, but not in the liver. When focusing on fatty acid oxidation both, short- and medium-term HFD feeding induced an upregulation of 3-hydroxy-3-methylglutaryl-coenzyme A, the key enzyme of ketogenesis, at the protein level in the intestinal epithelial cells, but not in the liver. These results suggest that HFD feeding induces an early adaptation of the small intestine rather than the liver in response to a substantial fat load. This highlights the importance of the small intestine in the adaptation of the body to the metabolic changes induced by HFD exposure. J. Cell. Physiol. 232: 167-175, 2017. © 2016 Wiley Periodicals, Inc.
Assuntos
Dieta Hiperlipídica , Enterócitos/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Gorduras na Dieta/metabolismo , Enterócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fatores de TempoRESUMO
Thylakoids reduce body weight gain and body fat accumulation in rodents. This study investigated whether an enhanced oxidation of dietary fat-derived fatty acids in the intestine contributes to the thylakoid effects. Male Sprague-Dawley rats were fed a high-fat diet with (n = 8) or without thylakoids (n = 8) for 2 wk. Body weight, food intake, and body fat were measured, and intestinal mucosa was collected and analyzed. Quantitative real-time PCR was used to measure gene expression levels of key enzymes involved in fatty acid transport, fatty acid oxidation, and ketogenesis. Another set of thylakoid-treated (n = 10) and control rats (n = 10) went through indirect calorimetry. In the first experiment, thylakoid-treated rats (n = 8) accumulated 25% less visceral fat than controls. Furthermore, fatty acid translocase (Fat/Cd36), carnitine palmitoyltransferase 1a (Cpt1a), and mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (Hmgcs2) genes were upregulated in the jejunum of the thylakoid-treated group. In the second experiment, thylakoid-treated rats (n = 10) gained 17.5% less weight compared with controls and their respiratory quotient was lower, 0.86 compared with 0.91. Thylakoid-intake resulted in decreased food intake and did not cause steatorrhea. These results suggest that thylakoids stimulated intestinal fatty acid oxidation and ketogenesis, resulting in an increased ability of the intestine to handle dietary fat. The increased fatty acid oxidation and the resulting reduction in food intake may contribute to the reduced fat accumulation in thylakoid-treated animals.
Assuntos
Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Mucosa Intestinal/metabolismo , Gordura Intra-Abdominal/fisiologia , Tilacoides/metabolismo , Regulação para Cima/fisiologia , Animais , Masculino , Tamanho do Órgão/fisiologia , Oxirredução , Ratos , Ratos Sprague-Dawley , Tilacoides/químicaRESUMO
Adult skeletal muscle is a dynamic, remarkably plastic tissue, which allows myofibers to switch from fast/glycolytic to slow/oxidative types and to increase mitochondrial fatty acid oxidation (mFAO) capacity and vascularization in response to exercise training. mFAO is the main muscle energy source during endurance exercise, with carnitine palmitoyltransferase 1 (CPT1) being the key regulatory enzyme. Whether increasing muscle mFAO affects skeletal muscle physiology in adulthood actually remains unknown. To investigate this, we used in vivo electrotransfer technology to express in mouse tibialis anterior (TA), a fast/glycolytic muscle, a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA, its physiologic inhibitor. In young (2-mo-old) adult mice, muscle CPT1mt expression enhanced mFAO (+40%), but also increased the percentage of oxidative fibers (+28%), glycogen content, and capillary-to-fiber density (+45%). This CPT1mt-induced muscle remodeling, which mimicked exercise-induced oxidative phenotype, led to a greater resistance to muscle fatigue. In the context of aging, characterized by sarcopenia and reduced oxidative capacity, CPT1mt expression in TAs from aged (20-mo-old) mice partially reversed aging-associated sarcopenia and fiber-type transition, and increased muscle capillarity. These findings provide evidence that mFAO regulates muscle phenotype and may be a potential target to combat age-related decline in muscle function.
Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Fatores Etários , Animais , Western Blotting , Carnitina O-Palmitoiltransferase/genética , Expressão Gênica , Glicogênio/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/fisiologia , Fadiga Muscular/genética , Fadiga Muscular/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Mutação , Oxirredução , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcopenia/genética , Sarcopenia/fisiopatologia , TransfecçãoRESUMO
Hepatic fatty acid oxidation (FAO) has long been implicated in the control of eating. Nevertheless, direct evidence for a causal relationship between changes in hepatic FAO and changes in food intake is still missing. Here we tested whether increasing hepatic FAO via adenovirus-mediated expression of a mutated form of the key regulatory enzyme of mitochondrial FAO carnitine palmitoyltransferase 1A (CPT1mt), which is active but insensitive to inhibition by malonyl-CoA, affects eating and metabolism in mice. CPT1mt expression increased hepatocellular CPT1 protein levels. This resulted in an increase in circulating ketone body levels in fasted CPT1mt-expressing mice, suggesting an increase in hepatic FAO. These mice did not show any significant changes in cumulative food intake, energy expenditure, or respiratory quotient after 4-h food deprivation. After 24-h food deprivation, however, the CPT1mt-expressing mice displayed increased food intake. Thus expression of CPT1mt in the liver increases hepatic FAO capacity, but does not inhibit eating. Rather, it may even stimulate eating after prolonged food deprivation. These data do not support the hypothesis that an increase in hepatic FAO decreases food intake.
Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Ingestão de Alimentos/fisiologia , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Mitocôndrias/metabolismo , Animais , Metabolismo Energético/fisiologia , Privação de Alimentos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais , OxirreduçãoRESUMO
The endogenous lipid messenger oleoylethanolamide (OEA) inhibits eating and modulates fat metabolism supposedly through the activation of peroxisome proliferator-activated receptor-α (PPARα) and vagal sensory fibers. We tested in adult male rats whether OEA stimulates fatty acid oxidation (FAO) and ketogenesis and whether it increases plasma levels of the satiating gut peptides glucagon-like peptide-1 (GLP-1) and peptide YY (PYY). We also explored whether OEA still inhibits eating after subdiaphragmatic vagal deafferentation (SDA). We found that intraperitoneally injected OEA (10 mg/kg body wt) reduced (P < 0.05) food intake mainly by increasing meal latency and that this effect was stronger in rats fed a 60% high-fat diet (HFD) than in chow-fed rats. OEA increased (P < 0.05) postprandial plasma nonesterified fatty acids and ß-hydroxybutyrate (BHB) in the hepatic portal vein (HPV) and vena cava (VC) 30 min after injection, which was more pronounced in HFD- than in chow-fed rats. OEA also increased the protein expression of the key ketogenetic enzyme, mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase, in the jejunum of HFD-fed rats, but not in the liver or duodenum of either diet group. Furthermore, OEA decreased GLP-1 and PYY concentrations (P < 0.05) in the HPV and VC 30 min after administration. Finally, OEA reduced food intake in SDA and sham-operated rats similarly. Our findings indicate that neither intact abdominal vagal afferents nor prandial increases in GLP-1 or
Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos , Ácidos Oleicos/farmacologia , Saciação/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos/fisiologia , Endocanabinoides , Trato Gastrointestinal/inervação , Trato Gastrointestinal/metabolismo , Peptídeo 1 Semelhante ao Glucagon/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ácidos Oleicos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Saciação/fisiologia , Nervo Vago/cirurgiaRESUMO
Acyl CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final step in triacylglycerol (TAG) synthesis and is highly expressed in the small intestine. Because DGAT-1 knockout mice are resistant to diet-induced obesity, we investigated the acute effects of intragastric (IG) infusion of a small molecule diacylglycerol acyltransferase-1 inhibitor (DGAT-1i) on eating, circulating fat metabolites, indirect calorimetry, and hepatic and intestinal expression of key fat catabolism enzymes in male rats adapted to an 8 h feeding-16 h deprivation schedule. Also, the DGAT-1i effect on fatty acid oxidation (FAO) was investigated in enterocyte cell culture models. IG DGAT-1i infusions reduced energy intake compared with vehicle in high-fat diet (HFD)-fed rats, but scarcely in chow-fed rats. IG DGAT-1i also blunted the postprandial increase in serum TAG and increased ß-hydroxybutyrate levels only in HFD-fed rats, in which it lowered the respiratory quotient and increased intestinal, but not hepatic, protein levels of Complex III of the mitochondrial respiratory chain and of mitochondrial hydroxymethylglutaryl-CoA synthase. Finally, the DGAT-1i enhanced FAO in CaCo2 (EC50 = 0.3494) and HuTu80 (EC50 = 0.00762) cells. Thus, pharmacological DGAT-1 inhibition leads to an increase in intestinal FAO and ketogenesis when dietary fat is available. This may contribute to the observed eating-inhibitory effect.
Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/metabolismo , Mucosa Intestinal/metabolismo , Oxirredução , Acil Coenzima A/metabolismo , Animais , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Dieta Hiperlipídica , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Ingestão de Energia , Humanos , Intestinos/enzimologia , Fígado/enzimologia , Fígado/metabolismo , Masculino , RatosRESUMO
BACKGROUND & AIMS: Despite major public health concern, therapy for non-alcoholic fatty liver, the liver manifestation of the metabolic syndrome often associated with insulin resistance (IR), remains elusive. Strategies aiming to decrease liver lipogenesis effectively corrected hepatic steatosis and IR in obese animals. However, they also indirectly increased mitochondrial long-chain fatty acid oxidation (mFAO) by decreasing malonyl-CoA, a lipogenic intermediate, which is the allosteric inhibitor of carnitine palmitoyltransferase 1 (CPT1A), the key enzyme of mFAO. We thus addressed whether enhancing hepatic mFAO capacity, through a direct modulation of liver CPT1A/malonyl-CoA partnership, can reverse an already established hepatic steatosis and IR in obese mice. METHODS: Adenovirus-mediated liver expression of a malonyl-CoA-insensitive CPT1A (CPT1mt) in high-fat/high-sucrose (HF/HS) diet-induced or genetically (ob/ob) obese mice was followed by metabolic and physiological investigations. RESULTS: In association with increased hepatic mFAO capacity, liver CPT1mt expression improved glucose tolerance and insulin response to a glucose load in HF/HS and ob/ob mice, showing increased insulin sensitivity, and corrected IR in ob/ob mice. Surprisingly, hepatic steatosis was not affected in CPT1mt-expressing obese mice, indicating a clear dissociation between hepatic steatosis and IR. Moreover, liver CPT1mt expression rescued HF/HS-induced impaired hepatic insulin signaling at the level of IRS-1, IRS-2, Akt, and GSK-3ß, most likely through the observed decrease in the HF/HS-induced accumulation of lipotoxic lipids, oxidative stress, and JNK activation. CONCLUSIONS: Enhancing hepatic mFAO capacity is sufficient to reverse a state of IR and glucose intolerance in obese mice independently of hepatic steatosis.
Assuntos
Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Intolerância à Glucose/metabolismo , Resistência à Insulina/fisiologia , Mitocôndrias Hepáticas/metabolismo , Obesidade/metabolismo , Adenoviridae/genética , Adiposidade/fisiologia , Animais , Peso Corporal/fisiologia , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Ácido Glucárico/metabolismo , Metabolismo dos Lipídeos/fisiologia , Masculino , Malonil Coenzima A/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , OxirreduçãoRESUMO
The mechanisms underlying the protective effect of monounsaturated fatty acids (e.g. oleate) against the lipotoxic action of saturated fatty acids (e.g. palmitate) in skeletal muscle cells remain poorly understood. This study aimed to examine the role of mitochondrial long-chain fatty acid (LCFA) oxidation in mediating oleate's protective effect against palmitate-induced lipotoxicity. CPT1 (carnitine palmitoyltransferase 1), which is the key regulatory enzyme of mitochondrial LCFA oxidation, is inhibited by malonyl-CoA, an intermediate of lipogenesis. We showed that expression of a mutant form of CPT1 (CPT1mt), which is active but insensitive to malonyl-CoA inhibition, in C2C12 myotubes led to increased LCFA oxidation flux even in the presence of high concentrations of glucose and insulin. Furthermore, similar to preincubation with oleate, CPT1mt expression protected muscle cells from palmitate-induced apoptosis and insulin resistance by decreasing the content of deleterious palmitate derivates (i.e. diacylglycerols and ceramides). Oleate preincubation exerted its protective effect by two mechanisms: (i) in contrast to CPT1mt expression, oleate preincubation increased the channeling of palmitate toward triglycerides, as a result of enhanced diacylglycerol acyltransferase 2 expression, and (ii) oleate preincubation promoted palmitate oxidation through increasing CPT1 expression and modulating the activities of acetyl-CoA carboxylase and AMP-activated protein kinase. In conclusion, we demonstrated that targeting mitochondrial LCFA oxidation via CPT1mt expression leads to the same protective effect as oleate preincubation, providing strong evidence that redirecting palmitate metabolism toward oxidation is sufficient to protect against palmitate-induced lipotoxicity.
Assuntos
Apoptose , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Ácido Oleico/química , Palmitatos/farmacologia , Animais , Western Blotting , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Imunofluorescência , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Ácido Oleico/metabolismo , Oxirredução , Consumo de Oxigênio , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
OBJECTIVE AND METHODS: Mercaptoacetate (MA) inhibits hepatic fatty acid oxidation (FAO) and stimulates feeding in rats fed fat-rich diets. To test whether the feeding stimulation by MA depends on hepatic FAO, we compared the effects of intraperitoneally injected MA (45.6 mg/kg body weight) with saline in rats fed diets containing 18% predominately long-chain triacylglycerols (LCTs; > or =90% 16 C) or 18% medium-chain triacylglycerols (MCTs; 51% 10-12 C). We hypothesized that, because medium-chain fatty acids reach the liver and are oxidized faster than long-chain fatty acids, if MA's feeding-stimulatory effect depends on hepatic FAO, MA should stimulate feeding more in MCT-fed rats than in LCT-fed rats. RESULTS: Although MA injected in mid-light phase stimulated feeding similarly in MCT- and LCT-fed rats, MA injected at light onset initially stimulated food intake (1 h) only in LCT- and not in MCT-fed rats. To investigate MA's metabolic effects during the initial hour, rats were sacrificed 30 min after light-onset injections. At this time plasma beta-hydroxybutyrate appeared to be higher in MCT- than in LCT-fed rats and to be increased by MA. In a final experiment, MA did not affect fatty acid content in liver and duodenum tissues but increased fatty acids in duodenal tissue mitochondria from 12 h-fasted rats fed chow. CONCLUSION: In light-onset tests, adaptation to the MCT diet increased hepatic FAO but not the feeding-stimulatory effect of MA in comparison with adaptation to the LCT diet, suggesting that at this time MA does not act in the liver to stimulate feeding or that this effect is not due to FAO inhibition. Inhibition of duodenal mitochondrial FAO may be another metabolic process through which MA stimulates feeding.
Assuntos
Ingestão de Energia/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Tioglicolatos/farmacologia , Triglicerídeos/metabolismo , Animais , Duodeno/metabolismo , Ingestão de Energia/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Privação de Alimentos , Injeções Intraperitoneais/veterinária , Metabolismo dos Lipídeos/fisiologia , Masculino , Oxirredução , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Triglicerídeos/administração & dosagem , Triglicerídeos/químicaRESUMO
The endogenous peroxisome proliferator-activated receptor alpha (PPAR-α) agonist Oleoylethanolamide (OEA) inhibits eating in rodents, mainly by delaying the onset of meals. The underlying mechanisms of OEA-induced anorexia, however, remain unclear. Animals treated with high OEA doses were shown to display signs of discomfort and impaired locomotion. Therefore, we first examined whether the impaired locomotion may contribute to OEA's anorectic effect. Second, it is controversial whether abdominal vagal afferents are necessary for OEA's anorectic effect. Thus, we explored alternative peripheral neural pathways mediating IP OEA's anorectic effect by performing a celiac-superior mesenteric ganglionectomy (CGX) or a subdiaphragmatic vagal deafferentation (SDA) alone or in combination. Exogenously administered OEA at a commonly used dose (10 mg/kg BW, IP) concurrently reduced food intake and compromised locomotor activity. Attempts to dissociate both phenomena using the dopamine D2/D3 receptor agonist Quinpirole (1 mg/kg BW, SC) failed because Quinpirole antagonized both, OEA-induced locomotor impairment and delay in eating onset. CGX attenuated the prolongation of the latency to eat by IP OEA, but neither SDA nor CGX prevented IP OEA-induced locomotor impairment. Our results indicate that IP OEA's anorectic effect may be secondary to impaired locomotion rather than due to physiological satiety. They further confirm that vagal afferents do not mediate exogenous OEA's anorectic effects, but suggest a role for spinal afferents in addition to an alternative, nonneuronal signaling route.
Assuntos
Anorexia/fisiopatologia , Endocanabinoides/farmacologia , Locomoção , Ácidos Oleicos/farmacologia , Animais , Anorexia/etiologia , Ingestão de Alimentos/efeitos dos fármacos , Endocanabinoides/toxicidade , Masculino , Ácidos Oleicos/toxicidade , Ratos , Ratos Sprague-Dawley , Nervo Vago/fisiologiaRESUMO
Studies indicate that modulating enterocyte metabolism might affect whole body glucose homeostasis and the development of diet-induced obesity (DIO). We tested whether enhancing enterocyte fatty acid oxidation (FAO) could protect mice from DIO and impaired glycemic control. To this end, we used mice expressing a mutant form of carnitine palmitoyltransferase-1a (CPT1mt), insensitive to inhibition by malonyl-CoA, in their enterocytes (iCPT1mt) and fed them low-fat control diet (CD) or high-fat diet (HFD) chronically. CPT1mt expression led to an upregulation of FAO in the enterocytes. On CD, iCPT1mt mice had impaired glycemic control and showed concomitant activation of lipogenesis, glycolysis and gluconeogenesis in their enterocytes. On HFD, both iCPT1mt and control mice developed DIO, but iCPT1mt mice showed improved glycemic control and reduced visceral fat mass. Together these data indicate that modulating enterocyte metabolism in iCPT1mt mice affects glycemic control in a body weight-independent, but dietary fat-dependent manner.
Assuntos
Dieta Hiperlipídica , Ácidos Graxos/química , Peroxidação de Lipídeos , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Duodeno/patologia , Enterócitos/citologia , Enterócitos/metabolismo , Teste de Tolerância a Glucose , Glicólise , Lipogênese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/metabolismo , Obesidade/patologia , Regulação para CimaRESUMO
OBJECTIVE: Intestinal metabolism might play a greater role in regulating whole body metabolism than previously believed. We aimed to enhance enterocyte metabolism in mice and investigate if it plays a role in diet-induced obesity (DIO) and its comorbidities. METHODS: Using the cre-loxP system, we overexpressed the mitochondrial NAD+ dependent protein deacetylase SIRT3 in enterocytes of mice (iSIRT3 mice). We chronically fed iSIRT3 mice and floxed-SIRT3 control (S3fl) mice a low-fat, control diet (CD) or a high-fat diet (HFD) and then phenotyped the mice. RESULTS: There were no genotype differences in any of the parameters tested when the mice were fed CD. Also, iSIRT3 mice were equally susceptible to the development of DIO as S3fl mice when fed HFD. They were, however, better able than S3fl mice to regulate their blood glucose levels in response to exogenous insulin and glucose, indicating that they were protected from developing insulin resistance. This improved glucose homeostasis was accompanied by an increase in enterocyte metabolic activity and an upregulation of ketogenic gene expression in the small intestine. CONCLUSION: Enhancing enterocyte oxidative metabolism can improve whole body glucose homeostasis.
Assuntos
Peso Corporal/fisiologia , Enterócitos/metabolismo , Glucose/metabolismo , Mucosa Intestinal/metabolismo , Sirtuína 3/biossíntese , Animais , Glicemia/metabolismo , Metabolismo Energético , Enterócitos/enzimologia , Intolerância à Glucose/metabolismo , Homeostase , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Mucosa Intestinal/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismoRESUMO
OBJECTIVE: Glucagon-like peptide-1 (GLP-1) is a potent satiating and incretin hormone released by enteroendocrine L-cells in response to eating. Dietary fat, in particular monounsaturated fatty acids, such as oleic acid (OA), potently stimulates GLP-1 secretion from L-cells. It is, however, unclear whether the intracellular metabolic handling of OA is involved in this effect. METHODS: First we determined the optimal medium for the bioenergetics measurements. Then we examined the effect of OA on the metabolism of the immortalized enteroendocrine GLUTag cell model and assessed GLP-1 release in parallel. We measured oxygen consumption rate and extracellular acidification rate in response to OA and to different metabolic inhibitors with the Seahorse extracellular flux analyzer. RESULTS: OA increased cellular respiration and potently stimulated GLP-1 release. The fatty acid oxidation inhibitor etomoxir did neither reduce OA-induced respiration nor affect the OA-induced GLP-1 release. In contrast, inhibition of the respiratory chain or of downstream steps of aerobic glycolysis reduced the OA-induced GLP-1 release, and an inhibition of the first step of glycolysis by addition of 2-deoxy-d-glucose even abolished it. CONCLUSION: These findings indicate that an indirect stimulation of glycolysis is crucial for the OA-induced release of GLP-1.
Assuntos
Respiração Celular/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glicólise/efeitos dos fármacos , Ácido Oleico/farmacologia , Trifosfato de Adenosina/biossíntese , Animais , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Linhagem Celular , Transporte de Elétrons/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Células Enteroendócrinas/efeitos dos fármacos , Glucose/metabolismo , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ácido Pirúvico/metabolismoRESUMO
A series of cinnamic acids along with their corresponding benzoate analogues were tested for their ability to scavenge hydrogen peroxide (H(2)O(2)), by using a highly sensitive, peroxyoxalate chemiluminescence assay. Among benzoic acid derivatives, vanillic acid (3-hydroxy-4-methoxybenzoic acid) was found to be the most efficient H(2)O(2) scavenger with its hydrogen peroxide scavenging activity (SA(HP)) being 170.20 microM(-1), whereas protocatechuic acid (3,4-dihydroxybenzoic acid) exhibited the weakest activity (5.90 microM(-1)). Caffeic acid (3,4-dihydroxycinnamic acid) was the strongest antioxidant amongst cinnamate derivatives with a SA(HP) = 8.2 microM(-1), as opposed to m-coumaric acid (2-hydroxycinnamic acid), which was found to be a poor hydrogen peroxide scavenger (SA(HP) = 0.18 microM(-1)). Comparison between the two groups revealed that benzoate derivatives are much stronger hydrogen peroxide quenchers in relation with their cinnamate analogues, and this finding was discussed on a basis of structure-activity relationships and comparative assessment of other antioxidant characteristics.
Assuntos
Benzoatos/farmacologia , Cinamatos/farmacologia , Sequestradores de Radicais Livres/química , Peróxido de Hidrogênio/química , Oxalatos/química , Benzoatos/química , Cinamatos/química , Medições Luminescentes , Sensibilidade e Especificidade , Relação Estrutura-AtividadeRESUMO
PPAR-α plays a key role in lipid metabolism; it enhances fatty acid oxidation (FAO) and ketogenesis. Pharmacological PPAR-α activation improves insulin sensitivity and reduces food intake, but its mechanisms of action remain unknown. We here report that intraperitoneal (IP) administration of the PPAR-α agonist Wy-14643 (40 mg/kg BW) reduced food intake in adult male rats fed a high-fat diet (HFD, 49% of the energy) mainly through an increase in the latency to eat after injection, and without inducing a conditioned taste avoidance. Also, IP administered Wy-14643 caused an acute (the first 60 min) decrease in the respiratory quotient (RQ) and an increase in hepatic portal vein ß-hydroxybutyrate level (at 35 min) without affecting plasma non-esterified fatty acids. Given the known stimulatory effect of PPAR-α on FAO and ketogenesis, we measured the protein expression level of carnitine palmitoyltransferase-1 (CPT 1A) and mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (HMG-CoAS2), two key enzymes for FAO and ketogenesis, respectively, in liver, duodenum and jejunum. Wy-14643 induced a significant increase in the expression of CPT 1A in the jejunum and duodenum and of HMG-CoAS2 in the jejunum, but neither CPT 1A nor HMG-CoAS2 expression was increased in the liver. The induction of CPT 1A and HMG-CoAS2 expression was associated with a decrease in the lipid droplet content selectively in the jejunum. Our findings indicate that Wy-14643 stimulates FAO and ketogenesis in the intestine, in particular in the jejunum, rather than in the liver, thus supporting the hypothesis that PPAR-α activation inhibits eating by stimulating intestinal FAO.
Assuntos
Ácidos Graxos/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Mucosa Intestinal/metabolismo , PPAR alfa/agonistas , Pirimidinas/farmacologia , Ácido 3-Hidroxibutírico/sangue , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Oxirredução , Pirimidinas/administração & dosagem , RatosRESUMO
Central and intraperitoneal C75, an inhibitor of fatty acid synthase and stimulator of carnitine palmitoyl-transferase-1, inhibits eating in mice and rats. Mechanisms involved in feeding inhibition after central C75 have been identified, but little is yet known about how systemic C75 might inhibit eating. One issue is whether intraperitoneal C75 reduces food intake in rats by influencing normal physiological controls of food intake or acts nonselectively, for example by eliciting illness or aversion. Another issue relates to whether intraperitoneal C75 acts centrally or, similar to some other peripheral metabolic controls of eating, activates abdominal vagal afferents to inhibit eating. To further address these questions, we investigated the effects of intraperitoneal C75 on spontaneous meal patterns and the formation of conditioned taste aversion (CTA). We also tested whether the eating inhibitory effect of intraperitoneal C75 is vagally mediated by testing rats after either total subdiaphragmatic vagotomy (TVX) or selective subdiaphragmatic vagal deafferentations (SDA). Intraperitoneal injection of 3.2 and 7.5 mg/kg of C75 significantly reduced food intake 3, 12, and 24 h after injection by reducing the number of meals without affecting meal size, whereas 15 mg/kg of C75 reduced both meal number and meal size. The two smaller doses of C75 failed to induce a CTA, but 15 mg/kg C75 did. The eating inhibitory effect of C75 was not diminished in either TVX or SDA rats. We conclude that intraperitoneal injections of low doses of C75 inhibit eating in a behaviorally specific manner and that this effect does not require abdominal vagal afferents.