Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Rev Neurosci ; 21(11): 595-610, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32929262

RESUMO

Various aspects of human cognition are shaped and enriched by abstract rules, which help to describe, link and classify discrete events and experiences into meaningful concepts. However, where and how these entities emerge in the primate brain and the neuronal mechanisms underlying them remain the subject of extensive research and debate. Evidence from imaging studies in humans and single-neuron recordings in monkeys suggests a pivotal role for the prefrontal cortex in the representation of abstract rules; however, behavioural studies in lesioned monkeys and data from neuropsychological examinations of patients with prefrontal damage indicate substantial functional dissociations and task dependency in the contribution of prefrontal cortical regions to rule-guided behaviour. This Review describes our current understanding of the dynamic emergence of abstract rules in primate cognition, and of the distributed neural network that supports abstract rule formation, maintenance, revision and task-dependent implementation.


Assuntos
Encéfalo/fisiologia , Aprendizagem/fisiologia , Neurônios/fisiologia , Animais , Sinais (Psicologia) , Tomada de Decisões/fisiologia , Função Executiva/fisiologia , Humanos , Memória/fisiologia , Vias Neurais/fisiologia , Testes Neuropsicológicos , Primatas
2.
J Neurosci ; 42(45): 8508-8513, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351824

RESUMO

Understanding the unique functions of different subregions of primate prefrontal cortex has been a longstanding goal in cognitive neuroscience. Yet, the anatomy and function of one of its largest subregions (the frontopolar cortex) remain enigmatic and underspecified. Our Society for Neuroscience minisymposium Primate Frontopolar Cortex: From Circuits to Complex Behaviors will comprise a range of new anatomic and functional approaches that have helped to clarify the basic circuit anatomy of the frontal pole, its functional involvement during performance of cognitively demanding behavioral paradigms in monkeys and humans, and its clinical potential as a target for noninvasive brain stimulation in patients with brain disorders. This review consolidates knowledge about the anatomy and connectivity of frontopolar cortex and provides an integrative summary of its function in primates. We aim to answer the question: what, if anything, does frontopolar cortex contribute to goal-directed cognition and action?


Assuntos
Cognição , Objetivos , Animais , Humanos , Cognição/fisiologia , Córtex Pré-Frontal/fisiologia , Lobo Frontal/fisiologia , Primatas , Haplorrinos
3.
Nat Rev Neurosci ; 18(11): 645-657, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28951610

RESUMO

Humans are set apart from other animals by many elements of advanced cognition and behaviour, including language, judgement and reasoning. What is special about the human brain that gives rise to these abilities? Could the foremost part of the prefrontal cortex (the frontopolar cortex), which has become considerably enlarged in humans during evolution compared with other animals, be important in this regard, especially as, in primates, it contains a unique cytoarchitectural field, area 10? The first studies of the function of the frontopolar cortex in monkeys have now provided critical new insights about its precise role in monitoring the significance of current and alternative goals. In human evolution, the frontopolar cortex may have acquired a further role in enabling the monitoring of the significance of multiple goals in parallel, as well as switching between them. Here, we argue that many other forms of uniquely human behaviour may benefit from this cognitive ability mediated by the frontopolar cortex.


Assuntos
Meio Ambiente , Lobo Frontal/fisiologia , Objetivos , Rede Nervosa/fisiologia , Pensamento/fisiologia , Animais , Cognição/fisiologia , Humanos , Julgamento/fisiologia
4.
J Neurophysiol ; 125(6): 2038-2053, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881914

RESUMO

The concept of working memory refers to a collection of cognitive abilities and processes involved in the short-term storage of task-relevant information to guide the ongoing and upcoming behavior and therefore describes an important aspect of executive control of behavior for achieving goals. Deficits in working memory and related cognitive abilities have been observed in patients with brain damage or neuropsychological disorders and therefore it is important to better understand neural substrate and underlying mechanisms of working memory. Working memory relies on neural mechanisms that enable encoding, maintenance, and manipulation of stored information as well as integrating them with ongoing and future goals. Recently, a surge in brain stimulation studies have led to development of various noninvasive techniques for localized stimulation of prefrontal and other cortical regions in humans. These brain stimulation techniques can potentially be tailored to influence neural activities in particular brain regions and modulate cognitive functions and behavior. Combined use of brain stimulation with neuroimaging and electrophysiological recording have provided a great opportunity to monitor neural activity in various brain regions and noninvasively intervene and modulate cognitive functions in cognitive tasks. These studies have shed more light on the neural substrate and underlying mechanisms of working memory in humans. Here, we review findings and insight from these brain stimulation studies about the contribution of brain regions, and particularly prefrontal cortex, to working memory.


Assuntos
Encéfalo/fisiologia , Estimulação Encefálica Profunda , Córtex Pré-Frontal Dorsolateral/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Animais , Humanos
5.
Adv Physiol Educ ; 45(2): 376-383, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33961516

RESUMO

The Corona Virus Disease 19 (COVID-19) pandemic has imposed serious restrictions for academic institutions to maintain their research and teaching practical subjects. Universities have implemented adaptive measures to maintain educational activities and achieve the learning objectives for undergraduate and postgraduate students by shifting to online teaching and learning. Although such approaches have enabled delivering the theoretical content of courses during the pandemic, universities have faced serious difficulties in running practicals with actual research experiments and teaching hand-on skills because such activities potentially override the required safety guidelines. Here, we report an adaptive measure, implemented at Monash University, to run home-based studies in cognitive neuroscience and achieve learning objectives, which are normally delivered in face-to-face practicals. We introduce two specifically designed short-term research projects and describe how different aspects of these projects, such as tutorials, experiments, and assessments, were modified to meet the required social distancing. The results of cognitive tests were closely comparable between the laboratory-based and home-based experiments indicating that students followed the guidelines and the required procedures for a reliable data collection. Our assessments of students' performance and feedback indicate that the majority of our educational goals were achieved, while all safety guidelines and distancing requirements were also met.


Assuntos
Pesquisa Biomédica/organização & administração , COVID-19 , Neurociência Cognitiva/educação , Educação a Distância/normas , Pandemias , Humanos , Estudantes de Medicina
6.
Prog Neurobiol ; 209: 102216, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34995695

RESUMO

Trial-by-trial alterations in response time have been linked to fluctuations of executive control and transient lapses of attention. Here, we report remarkable homologies in performance-dependent fluctuations of response time between humans and monkeys. We examined the effects of selective bilateral lesions in four frontal regions on control fluctuations in the context of a rule-shifting task. Lesions within orbitofrontal cortex (OFC), but not within superior-lateral prefrontal cortex, significantly exaggerated the performance-dependent fluctuations of control and prevented its restoration following feedback. Lesions within dorsolateral prefrontal cortex (DLPFC) or within anterior-cingulate cortex (ACC) led to instability of control and disruption of its link with monkeys' upcoming decisions. Examining the activity of DLPFC and OFC cells shed more lights on the underlying neuronal mechanisms by showing that before the start of each trial, OFC cell activity conveyed detailed information regarding the current state of executive control and the likelihood of success or failure in the future decisions. This further emphasizes the crucial role of OFC in the trial-by-trial allocation (setting) of control to the ongoing task. These findings bring insights to the neural architecture of executive control in primates and suggest that DLPFC and ACC support sustained executive control, but OFC is more involved in setting and restoring the control.


Assuntos
Função Executiva , Primatas , Animais , Função Executiva/fisiologia , Lobo Frontal/fisiologia , Humanos , Córtex Pré-Frontal/fisiologia , Tempo de Reação/fisiologia
7.
Neurosci Biobehav Rev ; 138: 104692, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569579

RESUMO

Social-cognitive processes facilitate the use of environmental cues to understand others, and to be understood by others. Animal models provide vital insights into the neural underpinning of social behaviours. To understand social cognition at even deeper behavioural, cognitive, neural, and molecular levels, we need to develop more representative study models, which allow testing of novel hypotheses using human-relevant cognitive tasks. Due to their cooperative breeding system and relatively small size, common marmosets (Callithrix jacchus) offer a promising translational model for such endeavours. In addition to having social behavioural patterns and group dynamics analogous to those of humans, marmosets have cortical brain areas relevant for the mechanistic analysis of human social cognition, albeit in simplified form. Thus, they are likely suitable animal models for deciphering the physiological processes, connectivity and molecular mechanisms supporting advanced cognitive functions. Here, we review findings emerging from marmoset social and behavioural studies, which have already provided significant insights into executive, motivational, social, and emotional dysfunction associated with neurological and psychiatric disorders.


Assuntos
Callithrix , Cognição Social , Animais , Encéfalo/fisiologia , Callithrix/fisiologia , Cognição , Humanos , Comportamento Social
8.
Sci Rep ; 7(1): 18096, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273796

RESUMO

Influential hypotheses propose that alterations in emotional state influence decision processes and executive control of behavior. Both music and transcranial direct current stimulation (tDCS) of prefrontal cortex affect emotional state, however interactive effects of music and tDCS on executive functions remain unknown. Learning to inhibit inappropriate responses is an important aspect of executive control which is guided by assessing the decision outcomes such as errors. We found that high-tempo music, but not low-tempo music or low-level noise, significantly influenced learning and implementation of inhibitory control. In addition, a brief period of tDCS over prefrontal cortex specifically interacted with high-tempo music and altered its effects on executive functions. Measuring event-related autonomic and arousal response of participants indicated that exposure to task demands and practice led to a decline in arousal response to the decision outcome and high-tempo music enhanced such practice-related processes. However, tDCS specifically moderated the high-tempo music effect on the arousal response to errors and concomitantly restored learning and improvement in executive functions. Here, we show that tDCS and music interactively influence the learning and implementation of inhibitory control. Our findings indicate that alterations in the arousal-emotional response to the decision outcome might underlie these interactive effects.


Assuntos
Função Executiva/fisiologia , Inibição Psicológica , Música , Córtex Pré-Frontal/fisiologia , Adolescente , Adulto , Nível de Alerta/fisiologia , Emoções/fisiologia , Feminino , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Estimulação Transcraniana por Corrente Contínua , Adulto Jovem
9.
Psychopharmacology (Berl) ; 232(14): 2541-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25743756

RESUMO

RATIONALE: Memory impairment has been documented in MK-801 (NMDA receptor antagonist) model of schizophrenia, but less is known on the rescue and/or differential effects of MK-801 on short- and long-term memories. OBJECTIVES: We determined the effects of MK-801 treatment and/or enriched environment (EE) on acquisition of reference and working memory in developing rats. METHODS: Female Wistar rats were injected with MK-801 (1 mg/kg) from postnatal days (P) 6-10. Task acquisition, working memory error (WME), and reference memory error (RME) were assessed in an eight-arm radial maze task. Behavioral performance of rats was also tested in an open field test before (P35-P40) and after (P65-P70) radial maze training to assess anxiety and locomotion. EE was applied from birth up to the end of experiments. RESULTS: MK-801 treatment did not influence task acquisition in the radial maze; however, by the end of training, MK-801-treated rats made significantly more WME, but not RME, compared to control rats. Ratio of WME to total error was also significantly higher in MK-801 group. EE prevented MK-801-associated behaviors in the open field but did not exert beneficial effects on working memory deficit in the radial maze task. EE per se affected behavioral performance of rats only in the open field test. CONCLUSIONS: Our results suggest that postnatal MK-801 treatment differentially affects working and reference memory in a young brain. Anxiety and hyperactivity associated with MK-801 are observed more severely in adulthood. Dissociation of the positive effects of EE may suggest selective modification of distinct pathways.


Assuntos
Maleato de Dizocilpina/farmacologia , Meio Ambiente , Antagonistas de Aminoácidos Excitatórios/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Ansiedade/psicologia , Feminino , Atividade Motora/efeitos dos fármacos , Gravidez , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA