Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Neurosci ; 42(40): 7673-7688, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36333098

RESUMO

As the CNS-resident macrophages and member of the myeloid lineage, microglia fulfill manifold functions important for brain development and homeostasis. In the context of neurodegenerative diseases, they have been implicated in degenerative and regenerative processes. The discovery of distinct activation patterns, including increased phagocytosis, indicated a damaging role of myeloid cells in multiple system atrophy (MSA), a devastating, rapidly progressing atypical parkinsonian disorder. Here, we analyzed the gene expression profile of microglia in a mouse model of MSA (MBP29-hα-syn) and identified a disease-associated expression profile and upregulation of the colony-stimulating factor 1 (Csf1). Thus, we hypothesized that CSF1 receptor-mediated depletion of myeloid cells using PLX5622 modifies the disease progression and neuropathological phenotype in this mouse model. Intriguingly, sex-balanced analysis of myeloid cell depletion in MBP29-hα-syn mice revealed a two-faced outcome comprising an improved survival rate accompanied by a delayed onset of neurological symptoms in contrast to severely impaired motor functions. Furthermore, PLX5622 reversed gene expression profiles related to myeloid cell activation but reduced gene expression associated with transsynaptic signaling and signal release. While transcriptional changes were accompanied by a reduction of dopaminergic neurons in the SNpc, striatal neuritic density was increased upon myeloid cell depletion in MBP29-hα-syn mice. Together, our findings provide insight into the complex, two-faced role of myeloid cells in the context of MSA emphasizing the importance to carefully balance the beneficial and adverse effects of CSF1R inhibition in different models of neurodegenerative disorders before its clinical translation.SIGNIFICANCE STATEMENT Myeloid cells have been implicated as detrimental in the disease pathogenesis of multiple system atrophy. However, long-term CSF1R-dependent depletion of these cells in a mouse model of multiple system atrophy demonstrates a two-faced effect involving an improved survival associated with a delayed onset of disease and reduced inflammation which was contrasted by severely impaired motor functions, synaptic signaling, and neuronal circuitries. Thus, this study unraveled a complex role of myeloid cells in multiple system atrophy, which indicates important functions beyond the previously described disease-associated, destructive phenotype and emphasized the need of further investigation to carefully and individually fine-tune immunologic processes in different neurodegenerative diseases.


Assuntos
Atrofia de Múltiplos Sistemas , Animais , Camundongos , Atrofia de Múltiplos Sistemas/genética , Longevidade , Compostos Orgânicos/farmacologia , Microglia/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Modelos Animais de Doenças , Células Mieloides/metabolismo , Receptores de Fator Estimulador de Colônias
2.
Neurobiol Dis ; 178: 106010, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702318

RESUMO

Mutations or triplication of the alpha synuclein (ASYN) gene contribute to synucleinopathies including Parkinson's disease (PD), Dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Recent evidence suggests that ASYN also plays an important role in amyloid-induced neurotoxicity, although the mechanism(s) remains unknown. One hypothesis is that accumulation of ASYN alters endolysosomal pathways to impact axonal trafficking and processing of the amyloid precursor protein (APP). To define an axonal function for ASYN, we used a transgenic mouse model of synucleinopathy that expresses a GFP-human ASYN (GFP-hASYN) transgene and an ASYN knockout (ASYN-/-) mouse model. Our results demonstrate that expression of GFP-hASYN in primary neurons derived from a transgenic mouse impaired axonal trafficking and processing of APP. In addition, axonal transport of BACE1, Rab5, Rab7, lysosomes and mitochondria were also reduced in these neurons. Interestingly, axonal transport of these organelles was also affected in ASYN-/- neurons, suggesting that ASYN plays an important role in maintaining normal axonal transport function. Therefore, selective impairment of trafficking and processing of APP by ASYN may act as a potential mechanism to induce pathological features of Alzheimer's disease (AD) in PD patients.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases , Doença de Parkinson/genética , Camundongos Transgênicos , Lisossomos/metabolismo
3.
J Neurovirol ; 29(5): 564-576, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37801175

RESUMO

Central nervous system (CNS) dysfunction remains prevalent in people with HIV (PWH) despite effective antiretroviral therapy (ART). There is evidence that low-level HIV infection and ART drugs may contribute to CNS damage in the brain of PWH with suppressed viral loads. As cannabis is used at a higher rate in PWH compared to the general population, there is interest in understanding how HIV proteins and ART drugs interact with the endocannabinoid system (ECS) and inflammation in the CNS. Therefore, we investigated the effects of the HIV envelope protein gp120 and tenofovir alafenamide (TAF) on cannabinoid receptor 1 (CB1R), glial fibrillary acidic protein (GFAP), and IBA1 in the brain and on locomotor activity in mice. The gp120 transgenic (tg) mouse model was administered TAF daily for 30 days and then analyzed using the open field test before being euthanized, and their brains were analyzed for CB1R, GFAP, and IBA1 expression using immunohistochemical approaches. CB1R expression levels were significantly increased in CA1, CA2/3, and dentate gyrus of gp120tg mice compared to wt littermates; TAF reversed these effects. As expected, TAF showed a medium effect of enhancing GFAP in the frontal cortex of gp120tg mice in the frontal cortex. TAF had minimal effect on IBA1 signal. TAF showed medium to large effects on fine movements, rearing, total activity, total distance, and lateral activity in the open-field test. These findings suggest that TAF may reverse gp120-induced effects on CB1R expression and, unlike tenofovir disoproxil fumarate (TDF), may not affect gliosis in the brain.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , Humanos , Camundongos , Animais , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Proteína gp120 do Envelope de HIV/genética , Adenina/farmacologia , Camundongos Transgênicos , Hipocampo , Receptores de Canabinoides/uso terapêutico
4.
Neurobiol Dis ; 152: 105277, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33516874

RESUMO

The microtubule-associated protein tau is implicated in multiple degenerative diseases including retinal diseases such as glaucoma; however, the way tau initiates retinopathy is unclear. Previous retinal assessments in mouse models of tauopathy suggest that mutations in four-repeat (4R) tau are associated with disease-induced retinal dysfunction, while shifting tau isoform ratio to favor three-repeat (3R) tau production enhanced photoreceptor function. To further understand how alterations in tau expression impact the retina, we analyzed the retinas of transgenic mice overexpressing mutant 3R tau (m3R tau-Tg), a model known to exhibit Pick's Disease pathology in the brain. Analysis of retinal cross-sections from young (3 month) and adult (9 month) mice detected asymmetric 3R tau immunoreactivity in m3R tau-Tg retina, concentrated in the retinal ganglion and amacrine cells of the dorsal retinal periphery. Accumulation of hyperphosphorylated tau was detected specifically in the detergent insoluble fraction of the adult m3R tau-Tg retina. RNA-seq analysis highlighted biological pathways associated with tauopathy that were uniquely altered in m3R tau-Tg retina. The upregulation of transcript encoding apoptotic protease caspase-2 coincided with increased immunostaining in predominantly 3R tau positive retinal regions. In adult m3R tau-Tg, the dorsal peripheral retina of the adult m3R tau-Tg exhibited decreased cell density in the ganglion cell layer (GCL) and reduced thickness of the inner plexiform layer (IPL) compared to the ventral peripheral retina. Together, these data indicate that mutant 3R tau may mediate toxicity in retinal ganglion cells (RGC) by promoting caspase-2 expression which results in RGC degeneration. The m3R tau-Tg line has the potential to be used to assess tau-mediated RGC degeneration and test novel therapeutics for degenerative diseases such as glaucoma.


Assuntos
Caspase 2/metabolismo , Doenças Retinianas/patologia , Células Ganglionares da Retina/patologia , Tauopatias/patologia , Proteínas tau/metabolismo , Animais , Morte Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Isoformas de Proteínas , Doenças Retinianas/metabolismo , Células Ganglionares da Retina/metabolismo , Proteínas tau/genética
5.
J Neurosci ; 38(4): 1000-1014, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29246926

RESUMO

Dementia with Lewy bodies, Parkinson's disease, and Multiple System Atrophy are age-related neurodegenerative disorders characterized by progressive accumulation of α-synuclein (α-syn) and jointly termed synucleinopathies. Currently, no disease-modifying treatments are available for these disorders. Previous preclinical studies demonstrate that active and passive immunizations targeting α-syn partially ameliorate behavioral deficits and α-syn accumulation; however, it is unknown whether combining humoral and cellular immunization might act synergistically to reduce inflammation and improve microglial-mediated α-syn clearance. Since combined delivery of antigen plus rapamycin (RAP) in nanoparticles is known to induce antigen-specific regulatory T cells (Tregs), we adapted this approach to α-syn using the antigen-presenting cell-targeting glucan microparticle (GP) vaccine delivery system. PDGF-α-syn transgenic (tg) male and female mice were immunized with GP-alone, GP-α-syn (active humoral immunization), GP+RAP, or GP+RAP/α-syn (combined active humoral and Treg) and analyzed using neuropathological and biochemical markers. Active immunization resulted in higher serological total IgG, IgG1, and IgG2a anti-α-syn levels. Compared with mice immunized with GP-alone or GP-α-syn, mice vaccinated with GP+RAP or GP+RAP/α-syn displayed increased numbers of CD25-, FoxP3-, and CD4-positive cells in the CNS. GP-α-syn or GP+RAP/α-syn immunizations resulted in a 30-45% reduction in α-syn accumulation, neuroinflammation, and neurodegeneration. Mice immunized with GP+RAP/α-syn further rescued neurons and reduced neuroinflammation. Levels of TGF-ß1 were increased with GP+RAP/α-syn immunization, while levels of TNF-α and IL-6 were reduced. We conclude that the observed effects of GP+RAP/α-syn immunization support the hypothesis that cellular immunization may enhance the effects of active immunotherapy for the treatment of synucleinopathies.SIGNIFICANCE STATEMENT We show that a novel vaccination modality combining an antigen-presenting cell-targeting glucan particle (GP) vaccine delivery system with encapsulated antigen (α-synuclein) + rapamycin (RAP) induced both strong anti-α-synuclein antibody titers and regulatory T cells (Tregs). This vaccine, collectively termed GP+RAP/α-syn, is capable of triggering neuroprotective Treg responses in synucleinopathy models, and the combined vaccine is more effective than the humoral or cellular immunization alone. Together, these results support the further development of this multifunctional vaccine approach for the treatment of synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple systems atrophy.


Assuntos
Doenças Neurodegenerativas/imunologia , Linfócitos T Reguladores/imunologia , Vacinação/métodos , alfa-Sinucleína/imunologia , Animais , Feminino , Glucanos/administração & dosagem , Glucanos/imunologia , Humanos , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Imunossupressores/administração & dosagem , Masculino , Camundongos , Camundongos Transgênicos , Nanopartículas , Sirolimo/administração & dosagem , alfa-Sinucleína/administração & dosagem
6.
Neurobiol Dis ; 127: 163-177, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849508

RESUMO

Neurodegenerative disorders of the aging population are characterized by progressive accumulation of neuronal proteins such as α-synuclein (α-syn) in Parkinson's Disease (PD) and Amyloid ß (Aß) and Tau in Alzheimer's disease (AD) for which no treatments are currently available. The ability to regulate the expression at the gene transcription level would be beneficial for reducing the accumulation of these proteins or regulating expression levels of other genes in the CNS. Short interfering RNA molecules can bind specifically to target RNAs and deliver them for degradation. This approach has shown promise therapeutically in vitro and in vivo in mouse models of PD and AD and other neurological disorders; however, delivery of the siRNA to the CNS in vivo has been achieved primarily through intra-cerebral or intra-thecal injections that may be less amenable for clinical translation; therefore, alternative approaches for delivery of siRNAs to the brain is needed. Recently, we described a small peptide from the envelope protein of the rabies virus (C2-9r) that was utilized to deliver an siRNA targeting α-syn across the blood brain barrier (BBB) following intravenous injection. This approach showed reduced expression of α-syn and neuroprotection in a toxic mouse model of PD. However, since receptor-mediated delivery is potentially saturable, each allowing the delivery of a limited number of molecules, we identified an alternative peptide for the transport of nucleotides across the BBB based on the apolipoprotein B (apoB) protein targeted to the family of low-density lipoprotein receptors (LDL-R). We used an 11-amino acid sequence from the apoB protein (ApoB11) that, when coupled with a 9-amino acid arginine linker, can transport siRNAs across the BBB to neuronal and glial cells. To examine the value of this peptide mediated oligonucleotide delivery system for PD, we delivered an siRNA targeting the α-syn (siα-syn) in a transgenic mouse model of PD. We found that ApoB11 was effective (comparable to C2-9r) at mediating the delivery of siα-syn into the CNS, co-localized to neurons and glial cells and reduced levels of α-syn protein translation and accumulation. Delivery of ApoB11/siα-syn was accompanied by protection from degeneration of selected neuronal populations in the neocortex, limbic system and striato-nigral system and reduced neuro-inflammation. Taken together, these results suggest that systemic delivery of oligonucleotides targeting α-syn using ApoB11 might be an interesting alternative strategy worth considering for the experimental treatment of synucleinopathies.


Assuntos
Doença por Corpos de Lewy/terapia , Degeneração Neural/terapia , alfa-Sinucleína/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Vetores Genéticos , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Camundongos , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/metabolismo , Neurônios/metabolismo , RNA Interferente Pequeno/administração & dosagem , Receptores de LDL/genética , Receptores de LDL/metabolismo , alfa-Sinucleína/genética
9.
Alzheimers Dement ; 15(9): 1133-1148, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31378574

RESUMO

INTRODUCTION: Immunotherapeutic approaches targeting amyloid ß (Aß) protein and tau in Alzheimer's disease and α-synuclein (α-syn) in Parkinson's disease are being developed for treating dementia with Lewy bodies. However, it is unknown if single or combined immunotherapies targeting Aß and/or α-syn may be effective. METHODS: Amyloid precursor protein/α-syn tg mice were immunized with AFFITOPEs® (AFF) peptides specific to Aß (AD02) or α-syn (PD-AFF1) and the combination. RESULTS: AD02 more effectively reduced Aß and pTau burden; however, the combination exhibited some additive effects. Both AD02 and PD-AFF1 effectively reduced α-syn, ameliorated degeneration of pyramidal neurons, and reduced neuroinflammation. PD-AFF1 more effectively ameliorated cholinergic and dopaminergic fiber loss; the combined immunization displayed additive effects. AD02 more effectively improved buried pellet test behavior, whereas PD-AFF1 more effectively improved horizontal beam test; the combined immunization displayed additive effects. DISCUSSION: Specific active immunotherapy targeting Aß and/or α-syn may be of potential interest for the treatment of dementia with Lewy bodies.


Assuntos
Peptídeos beta-Amiloides/imunologia , Imunoterapia , Doença por Corpos de Lewy/imunologia , alfa-Sinucleína/imunologia , Doença de Alzheimer , Animais , Humanos , Fatores Imunológicos , Camundongos , Doença de Parkinson
10.
Acta Neuropathol ; 136(1): 69-87, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29934874

RESUMO

Alzheimer's disease (AD) is the most common form of dementia in the elderly affecting more than 5 million people in the U.S. AD is characterized by the accumulation of ß-amyloid (Aß) and Tau in the brain, and is manifested by severe impairments in memory and cognition. Therefore, removing tau pathology has become one of the main therapeutic goals for the treatment of AD. Tau (tubulin-associated unit) is a major neuronal cytoskeletal protein found in the CNS encoded by the gene MAPT. Alternative splicing generates two major isoforms of tau containing either 3 or 4 repeat (R) segments. These 3R or 4RTau species are differentially expressed in neurodegenerative diseases. Previous studies have been focused on reducing Tau accumulation with antibodies against total Tau, 4RTau or phosphorylated isoforms. Here, we developed a brain penetrating, single chain antibody that specifically recognizes a pathogenic 3RTau. This single chain antibody was modified by the addition of a fragment of the apoB protein to facilitate trafficking into the brain, once in the CNS these antibody fragments reduced the accumulation of 3RTau and related deficits in a transgenic mouse model of tauopathy. NMR studies showed that the single chain antibody recognized an epitope at aa 40-62 of 3RTau. This single chain antibody reduced 3RTau transmission and facilitated the clearance of Tau via the endosomal-lysosomal pathway. Together, these results suggest that targeting 3RTau with highly specific, brain penetrating, single chain antibodies might be of potential value for the treatment of tauopathies such as Pick's Disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Expansão das Repetições de DNA/genética , Doença de Pick/tratamento farmacológico , Anticorpos de Cadeia Única/uso terapêutico , Proteínas tau/genética , Proteínas tau/imunologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Apolipoproteínas B/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Transformada , Técnicas de Cocultura , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuroblastoma/patologia , Fosforilação , Doença de Pick/genética , Doença de Pick/patologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas tau/metabolismo
11.
J Neurosci ; 36(30): 7971-84, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27466341

RESUMO

UNLABELLED: Alzheimer's disease (AD) is characterized by the progressive accumulation of amyloid ß (Aß) and microtubule associate protein tau, leading to the selective degeneration of neurons in the neocortex, limbic system, and nucleus basalis, among others. Recent studies have shown that α-synuclein (α-syn) also accumulates in the brains of patients with AD and interacts with Aß and tau, forming toxic hetero-oligomers. Although the involvement of α-syn has been investigated extensively in Lewy body disease, less is known about the role of this synaptic protein in AD. Here, we found that reducing endogenous α-syn in an APP transgenic mouse model of AD prevented the degeneration of cholinergic neurons, ameliorated corresponding deficits, and recovered the levels of Rab3a and Rab5 proteins involved in intracellular transport and sorting of nerve growth factor and brain-derived neurotrophic factor. Together, these results suggest that α-syn might participate in mechanisms of vulnerability of selected neuronal populations in AD and that reducing α-syn might be a potential approach to protecting these populations from the toxic effects of Aß. SIGNIFICANCE STATEMENT: Reducing endogenous α-synuclein (α-syn) in an APP transgenic mouse model of Alzheimer's disease (AD) prevented the degeneration of cholinergic neurons, ameliorated corresponding deficits, and recovered the levels of Rab3a and Rab5 proteins involved in intracellular transport and sorting of nerve growth factor and brain-derived neurotrophic factor. These results suggest that α-syn might participate in mechanisms of vulnerability of selected neuronal populations in AD and that reducing α-syn might be a potential approach to protecting these populations from the toxic effects of amyloid ß.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Neurônios/metabolismo , Neurônios/patologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Regulação para Baixo/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , alfa-Sinucleína/genética , Proteína rab3A de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
12.
Neurobiol Dis ; 104: 85-96, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28476636

RESUMO

Disorders with progressive accumulation of α-synuclein (α-syn) are a common cause of dementia and parkinsonism in the aging population. Accumulation and propagation of α-syn play a role in the pathogenesis of these disorders. Previous studies have shown that immunization with antibodies that recognize C-terminus of α-syn reduces the intra-neuronal accumulation of α-syn and related deficits in transgenic models of synucleinopathy. These studies employed antibodies that recognize epitopes within monomeric and aggregated α-syn that were generated through active immunization or administered via passive immunization. However, it is possible that more specific effects might be achieved with antibodies recognizing selective species of the α-syn aggregates. In this respect we recently developed antibodies that differentially recognized various oligomers (Syn-O1, -O2, and -O4) and fibrilar (Syn-F1 and -F2) forms of α-syn. For this purpose wild-type α-syn transgenic (line 61) mice were immunized with these 5 different antibodies and neuropathologically and biochemically analyzed to determine which was most effective at reducing α-syn accumulation and related deficits. We found that Syn-O1, -O4 and -F1 antibodies were most effective at reducing accumulation of α-syn oligomers in multiple brain regions and at preventing neurodegeneration. Together this study supports the notion that selective antibodies against α-syn might be suitable for development new treatments for synucleinopathies such as PD and DLB.


Assuntos
Demência/terapia , Imunoterapia/métodos , Transtornos Parkinsonianos/terapia , alfa-Sinucleína/imunologia , alfa-Sinucleína/metabolismo , Análise de Variância , Animais , Anticorpos/uso terapêutico , Proteínas de Ligação ao Cálcio/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Demência/genética , Demência/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Comportamento Exploratório/fisiologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microscopia Confocal , Neuroblastoma/patologia , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/imunologia , Sinaptofisina/metabolismo , alfa-Sinucleína/genética
13.
J Neuroinflammation ; 13(1): 120, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27220536

RESUMO

BACKGROUND: HIV-associated neurocognitive disorders (HAND) continue to be a common morbidity associated with chronic HIV infection. It has been shown that HIV proteins (e.g., gp120) released from infected microglial/macrophage cells can cause neuronal damage by triggering inflammation and oxidative stress, activating aberrant kinase pathways, and by disrupting mitochondrial function and biogenesis. Previous studies have shown that FK506, an immunophilin ligand that modulates inflammation and mitochondrial function and inhibits calcineurin, is capable of rescuing the neurodegenerative pathology in models of Parkinson's disease, Alzheimer's disease, and Huntington's disease. In this context, the main objective of this study was to evaluate if FK506 could rescue the neuronal degeneration and mitochondrial alterations in a transgenic (tg) animal model of HIV1-gp120 neurotoxicity. METHODS: GFAP-gp120 tg mice were treated with FK506 and analyzed for neuropathology, behavior, mitochondrial markers, and calcium flux by two-photon microscopy. RESULTS: We found that FK506 reduced the neuronal cell loss and neuro-inflammation in the gp120 tg mice. Moreover, while vehicle-treated gp120 tg mice displayed damaged mitochondria and increased neuro-inflammatory markers, FK506 rescued the morphological mitochondrial alterations and neuro-inflammation while increasing levels of optic atrophy 1 and mitofusin 1. By two-photon microscopy, calcium levels were not affected in the gp120 tg mice and no effects of FK506 were detected. However, at a functional level, FK506 ameliorated the gp120 tg mice hyperactivity in the open field. CONCLUSIONS: Together, these results suggest that FK506 might be potentially neuroprotective in patients with HAND by mitigating inflammation and mitochondrial alterations.


Assuntos
Proteína gp120 do Envelope de HIV/toxicidade , Imunossupressores/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Tacrolimo/uso terapêutico , Análise de Variância , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Encefalite/tratamento farmacológico , Interleucina-6/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Degeneração Neural/tratamento farmacológico , Degeneração Neural/etiologia , Proteínas do Tecido Nervoso/metabolismo , Síndromes Neurotóxicas/complicações , Proteínas de Ligação a Tacrolimo/metabolismo , Resultado do Tratamento
14.
J Neurosci ; 34(28): 9441-54, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25009275

RESUMO

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are common neurodegenerative disorders of the aging population, characterized by progressive and abnormal accumulation of α-synuclein (α-syn). Recent studies have shown that C-terminus (CT) truncation and propagation of α-syn play a role in the pathogenesis of PD/DLB. Therefore, we explored the effect of passive immunization against the CT of α-syn in the mThy1-α-syn transgenic (tg) mouse model, which resembles the striato-nigral and motor deficits of PD. Mice were immunized with the new monoclonal antibodies 1H7, 5C1, or 5D12, all directed against the CT of α-syn. CT α-syn antibodies attenuated synaptic and axonal pathology, reduced the accumulation of CT-truncated α-syn (CT-α-syn) in axons, rescued the loss of tyrosine hydroxylase fibers in striatum, and improved motor and memory deficits. Among them, 1H7 and 5C1 were most effective at decreasing levels of CT-α-syn and higher-molecular-weight aggregates. Furthermore, in vitro studies showed that preincubation of recombinant α-syn with 1H7 and 5C1 prevented CT cleavage of α-syn. In a cell-based system, CT antibodies reduced cell-to-cell propagation of full-length α-syn, but not of the CT-α-syn that lacked the 118-126 aa recognition site needed for antibody binding. Furthermore, the results obtained after lentiviral expression of α-syn suggest that antibodies might be blocking the extracellular truncation of α-syn by calpain-1. Together, these results demonstrate that antibodies against the CT of α-syn reduce levels of CT-truncated fragments of the protein and its propagation, thus ameliorating PD-like pathology and improving behavioral and motor functions in a mouse model of this disease.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Encéfalo/imunologia , Transtornos dos Movimentos/imunologia , Transtornos dos Movimentos/terapia , Transtornos Parkinsonianos/imunologia , Transtornos Parkinsonianos/terapia , alfa-Sinucleína/imunologia , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Transgênicos , Distribuição Tecidual , Resultado do Tratamento
15.
J Neuroinflammation ; 12: 93, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25966683

RESUMO

BACKGROUND: Parkinson's disease (PD) is one of the most common causes of dementia and motor deficits in the elderly. PD is characterized by the abnormal accumulation of the synaptic protein alpha-synuclein (α-syn) and degeneration of dopaminergic neurons in substantia nigra, which leads to neurodegeneration and neuroinflammation. Currently, there are no disease modifying alternatives for PD; however, targeting neuroinflammation might be a viable option for reducing motor deficits and neurodegeneration. Lenalidomide is a thalidomide derivative designed for reduced toxicity and increased immunomodulatory properties. Lenalidomide has shown protective effects in an animal model of amyotrophic lateral sclerosis, and its mechanism of action involves modulation of cytokine production and inhibition of NF-κB signaling. METHODS: In order to assess the effect of lenalidomide in an animal model of PD, mThy1-α-syn transgenic mice were treated with lenalidomide or the parent molecule thalidomide at 100 mg/kg for 4 weeks. RESULTS: Lenalidomide reduced motor behavioral deficits and ameliorated dopaminergic fiber loss in the striatum. This protective action was accompanied by a reduction in microgliosis both in striatum and hippocampus. Central expression of pro-inflammatory cytokines was diminished in lenalidomide-treated transgenic animals, together with reduction in NF-κB activation. CONCLUSION: These results support the therapeutic potential of lenalidomide for reducing maladaptive neuroinflammation in PD and related neuropathologies.


Assuntos
Fatores Imunológicos/uso terapêutico , Transtornos Mentais , Microglia/efeitos dos fármacos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Talidomida/análogos & derivados , Análise de Variância , Animais , Linhagem Celular Transformada , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Fatores Imunológicos/farmacologia , Lenalidomida , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/etiologia , Transtornos Mentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Talidomida/farmacologia , Talidomida/uso terapêutico , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
16.
J Neuroinflammation ; 12: 236, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26683203

RESUMO

BACKGROUND: Deposition of α-synuclein and neuroinflammation are key pathological features of Parkinson's disease (PD). There is no cure for the disease; however, targeting the pathological features might be available to modulate the disease onset and progression. Hypoestoxide (HE) has been demonstrated as a NF-κB modulator, thereby acting as a potential anti-inflammatory and anti-cancer drug. METHODS: In order to assess the effect of HE in a mouse model of PD, mThy1-α-syn transgenic mice received intraperitoneal (IP) injections of either vehicle or HE (5 mg/kg) daily for 4 weeks. RESULTS: Treatment of HE decreased microgliosis, astrogliosis, and pro-inflammatory cytokine gene expression in α-syn transgenic mice. HE administration also prevented the loss of dopaminergic neurons and ameliorated motor behavioral deficits in the α-syn transgenic mice, and α-synuclein pathology was significantly reduced by treatment of HE. In addition, increased levels of nuclear phosphorylated NF-κB in the frontal cortex of α-syn transgenic mice were significantly reduced by HE administration. CONCLUSIONS: These results support the therapeutic potential of HE for PD and other α-synuclein-related diseases.


Assuntos
Modelos Animais de Doenças , Diterpenos/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/biossíntese , Animais , Diterpenos/farmacologia , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Doença de Parkinson/genética
17.
BMC Neurosci ; 16: 85, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26611895

RESUMO

BACKGROUND: Tauopathies are a group of neurodegenerative disorders with accumulation of three-repeat (3R) or four-repeat (4R) Tau. While 3R tau is found in Pick's disease and Alzheimer's disease (AD), 4R tau is more abundant in corticobasal degeneration, progressive supranuclear palsy, and AD. We have previously shown that Cerebrolysin™ (CBL), a neuropeptide mixture with neurotrophic effects, ameliorates the pathology in amyloid precursor protein transgenic (tg) mouse model of AD and 4R tau, however it is unclear if CBL ameliorates the deficits and neuropathology in the mouse model of Pick's disease over expressing 3R tau. RESULTS: Mice expressing 3R tau (L266V and G272V mutations) under the mThy-1 promoter were treated with CBL in two separate groups, the first was 3 months old (treated for 3 months, IP) and the second was 6 months old (treated for 3 months, IP) at the start of the treatment. We found that although the levels of total 3R tau were unchanged, CBL reduced the levels of hyper-phosphorylated tau in both groups of mice. This was accompanied by reduced neurodegenerative pathology in the neocortex and hippocampus in both groups and by improvements in the behavioral deficits in the nest-building test and water maze in the 3-6 month group. CONCLUSION: Taken together these results support the notion that CBL may be beneficial in other taupathy models by reducing the levels of aberrantly phosphorylated tau.


Assuntos
Aminoácidos/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Pick/tratamento farmacológico , Tauopatias/tratamento farmacológico , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Fosforilação/efeitos dos fármacos , Doença de Pick/metabolismo , Doença de Pick/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo
18.
Brain ; 137(Pt 5): 1496-513, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24662516

RESUMO

In Parkinson's disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the higher-expressing α-synuclein E57K mice displayed synaptic and dendritic loss, reduced levels of synapsin 1 and synaptic vesicles, and behavioural deficits. Similar alterations, but to a lesser extent, were seen in the α-synuclein wild-type mice. Moreover, although the oligomer-prone α-synuclein mice displayed neurodegeneration in the frontal cortex and hippocampus, the α-synuclein wild-type only displayed neuronal loss in the hippocampus. These results support the hypothesis that accumulating oligomeric α-synuclein may mediate early synaptic pathology in Parkinson's disease and dementia with Lewy bodies by disrupting synaptic vesicles. This oligomer-prone model might be useful for evaluating therapies directed at oligomer reduction.


Assuntos
Encéfalo/patologia , Degeneração Neural/patologia , Neurônios/metabolismo , Sinapses/patologia , alfa-Sinucleína/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Ácido Glutâmico/genética , Humanos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Lisina/genética , Transtornos da Memória/etiologia , Transtornos da Memória/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , alfa-Sinucleína/genética
19.
Glia ; 62(2): 317-37, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24310907

RESUMO

Multiple system atrophy (MSA) is a neurodegenerative disease characterized by the pathological accumulation of alpha-synuclein (α-syn) within oligodendroglial cells. This accumulation is accompanied by neuroinflammation with astrogliosis and microgliosis, that leads to neuronal death and subsequent parkinsonism and dysautonomia. Antidepressants have been explored as neuroprotective agents as they normalize neurotrophic factor levels, increase neurogenesis and reduce neurodegeneration, but their anti-inflammatory properties have not been fully characterized. We analyzed the anti-inflammatory profiles of three different antidepressants (fluoxetine, olanzapine and amitriptyline) in the MBP1-hα-syn transgenic (tg) mouse model of MSA. We observed that antidepressant treatment decreased the number of α-syn-positive cells in the basal ganglia of 11-month-old tg animals. This reduction was accompanied with a similar decrease in the colocalization of α-syn with astrocyte markers in this brain structure. Consistent with these results, antidepressants reduced astrogliosis in the hippocampus and basal ganglia of the MBP1-hα-syn tg mice, and modulated the expression levels of key cytokines that were dysregulated in the tg mouse model, such as IL-1ß. In vitro experiments in the astroglial cell line C6 confirmed that antidepressants inhibited NF-κB translocation to the nucleus and reduced IL-1ß protein levels. We conclude that the anti-inflammatory properties of antidepressants in the MBP1-hα-syn tg mouse model of MSA might be related to their ability to inhibit α-syn propagation from oligodendrocytes to astroglia and to regulate transcription factors involved in cytokine expression. Our results suggest that antidepressants might be of interest as anti-inflammatory and α-syn-reducing agents for MSA and other α-synucleinopathies.


Assuntos
Antidepressivos/farmacologia , Astrócitos/metabolismo , Atrofia de Múltiplos Sistemas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/patologia , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo
20.
Eur J Neurosci ; 39(6): 1026-1041, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24304186

RESUMO

MicroRNA (miRNA) are short sequences of RNA that function as post-transcriptional regulators by binding to target mRNA transcripts resulting in translational repression. A number of recent studies have identified miRNA as being involved in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. However, the role of miRNA in multiple system atrophy (MSA), a progressive neurodegenerative disorder characterized by oligodendroglial accumulation of alpha-synuclein remains unexamined. In this context, this study examined miRNA profiles in MSA cases compared with controls and in transgenic (tg) models of MSA compared with non-tg mice. The results demonstrate a widespread dysregulation of miRNA in MSA cases, which is recapitulated in the murine models. The study employed a cross-disease, cross-species approach to identify miRNA that were either specifically dysregulated in MSA or were commonly dysregulated in neurodegenerative conditions such as Alzheimer's disease, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal degeneration or the tg mouse model equivalents of these disorders. Using this approach we identified a number of miRNA that were commonly dysregulated between disorders and those that were disease-specific. Moreover, we identified miR-96 as being up-regulated in MSA. Consistent with the up-regulation of miR-96, mRNA and protein levels of members of the solute carrier protein family SLC1A1 and SLC6A6, miR-96 target genes, were down-regulated in MSA cases and a tg model of MSA. These results suggest that miR-96 dysregulation may play a role in MSA and its target genes may be involved in the pathogenesis of MSA.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Huntington/metabolismo , MicroRNAs/genética , Doença de Parkinson/metabolismo , Processamento Pós-Transcricional do RNA , Animais , Estudos de Casos e Controles , Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/metabolismo , Perfilação da Expressão Gênica , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA