RESUMO
Microplastics are ubiquitous in the environment and aged microplastics are highly susceptible to absorbing pollutants from the environment. In this study, electron beam was innovatively used to treat PVC composite Cr(VI) pollutants (Composite contaminant formed by polyvinyl chloride microplastics with the heavy metal hexavalent chromium). Experiments showed that electron beam was able to achieve synergistic removal of PVC composite Cr(VI) pollutants compared to degrading the pollutants alone. During the electron beam removal of PVC composite Cr(VI) pollutants, the reduction efficiency of Cr(VI) increased from 57% to 92%, Cl- concentration increased from 3.52 to 12.41 mg L-1, and TOC concentration increased from 16.72 to 26.60 mg L-1. The research confirmed that electron beam can effectively promote the aging degradation of PVC, alter the physicochemical properties of microplastics, and generate oxygen-containing functional groups on the surface of microplastics. Aged microplastics enhanced the adsorption capacity for Cr(VI) through electrostatic and chelation interactions, and the adsorption process followed second-order kinetics and the Freundlich model. Theoretical calculations and experiments demonstrated that PVC consumed oxidizing free radical through dechlorination and decarboxylation processes, generating inorganic ions and small organic molecules. These inorganic ions and small organic molecules further reacted with oxidizing free radical to produce reducing free radicals, facilitating the reduction of Cr(VI). Cr(VI) continuously consumed the educing free radicals to transform into Cr (â ¢), enhancing the system oxidative atmosphere and promoting the oxidation degradation of PVC. This study investigated the formation and synergistic removal processes of PVC composite pollutants, offering new insights for controlling microplastics composite pollution.
Assuntos
Cromo , Microplásticos , Cloreto de Polivinila , Poluentes Químicos da Água , Cromo/química , Microplásticos/química , Poluentes Químicos da Água/química , Adsorção , Cloreto de Polivinila/química , Cinética , Elétrons , Recuperação e Remediação Ambiental/métodosRESUMO
Microplastics are increasingly prevalent in the environment, and their ability to adsorb various organic additives, posing harm to organisms, has attracted growing attention. Currently, there are no effective methods to age microplastics, and there is limited discussion on the subsequent treatment of aged microplastics. This study focuses on micro polyethylene (PE) and employs electron beam technology for aging treatment, investigating the adsorption and leaching behavior between PE and dibutyl phthalate (DBP) before and after aging. Experimental results indicate that with increasing doses of electron beam irradiation, the surface microstructure of PE worsens, inducing the generation of oxygen-containing functional groups on the surface of polyethylene. Comparative evaluations between electron beam aging and existing methods show that electron beam technology surpasses existing aging methods, achieving a level of aging exceeding 0.7 within an extremely short period of 1 min at doses exceeding 350 kGy. Adsorption experiments demonstrate that the adsorption between PE and DBP conforms to pseudo-second-order kinetics and the Freundlich model both before and after aging. The adsorption capacity of microplastics for DBP increases from 76.8 mg g-1 to 167.0 mg g-1 after treatment, exceeding that of conventional DBP adsorbents. Electron beam irradiation causes aging of microplastics mainly through the generation of ·OH, which lead to the formation of oxygen-containing functional groups on the microplastics' surface, thereby enhancing their adsorption capacity for DBP. This provides a new perspective for the degradation of aged microplastics and composite pollutants.
Assuntos
Dibutilftalato , Microplásticos , Adsorção , Dibutilftalato/química , Microplásticos/química , Cinética , Polietileno/química , Elétrons , Poluentes Químicos da Água/químicaRESUMO
Amidoxime-based fiber adsorbents hold significant promise for uranium extraction. However, a notable issue is that these adsorbents primarily originate from synthetic polymer materials, which, aside from providing good mechanical support, have no other functions. In recent study, we shifted our focus to silk fiber (SF), a natural protein fiber known for its unique core-shell structure and rich amino acids. The shell layer, due to its abundant functional groups, makes it easily modifiable, while the core layer provides excellent mechanical strength. Leveraging these inherent properties, an amidoxime-based fiber adsorbent was developed. This adsorbent utilizes amino and carboxyl groups for enhanced performance synergistically. This method involves establishing uranium affinity sites on the outer sericin layer of SF via chemical initiation of graft polymerization (CIGP) and amidoximation (SF-g-PAO). The water absorption ratio of SF-g-PAO is as high as 601.16 % (DG = 97.17 %). Besides, SF-g-PAO demonstrates an exceptional adsorption capacity of 15.69 mg/g in simulated seawater, achieving a remarkable removal rate of uranyl ions at 95.06 %. It can withstand a minimum of five adsorption-elution cycles. Over a 4-week period in natural seawater, SF-g-PAO displayed an adsorption capacity of 4.95 mg/g. Furthermore, SF-g-PAO also exhibits impressive uranium removal efficiency in real nuclear wastewater, with a removal rate of 63 % in just 15 min and a final removal rate of 90 %. It is hoped that this SF-g-PAO, prepared through this straightforward method and characterized by the synergistic action of amino and carboxyl groups, can offer innovative insights into the development of uranium extraction adsorbents.
Assuntos
Oximas , Seda , Urânio , Urânio/química , Adsorção , Oximas/química , Seda/química , Fibroínas/químicaRESUMO
Functionalization of graphene enables precise control over interlayer spacing during film formation, thereby enhancing the separation efficiency of radioactive ions in graphene membranes. However, the systematic impact of interlayer spacing of graphene membranes on radioactive-ion separation remains unexplored. This study aims to elucidate how interlayer spacing in functionalized graphene membranes affects the separation of radioactive ions. Utilizing polyamidoxime (PAO) to modify graphene oxide, we controlled the interlayer spacing of graphene membranes. Experimental results indicate that tuning interlayer spacing enables control of the permeation flux of radioactive ions (UO22+ 1.01 × 10-5-8.32 × 10-5 mol/m2·h, and K+ remains stable at 3.60 × 10-4 mol/m2·h), and the K+/UO22+ separation factors up to 36.2 at an interlayer spacing of 8.8 Å. Using density functional theory and molecular dynamics simulations, we discovered that the effective separation is mainly determined via interlayer spacing and the quantity of introduced functional groups, explaining the anomalous high permeation flux of target ions at low interlayer spacing (4.3 Å). This study deepens our comprehension of interlayer spacing within nanoconfined spaces for ion separation and recovery via graphene membranes, offering valuable insights for the design and synthesis of high-performance nanomembrane materials.
RESUMO
Microplastics, as an emerging pollutant, are widely distributed worldwide. Extensive research has been conducted to address the issue of microplastic pollution; however, effective methods for microplastic treatment are still lacking. This study innovatively utilizes electron beam technology to age and degrade microplastics. Compared to other treatment methods, electron beam technology can effectively promote the aging and degradation of microplastics. The Oxygen - carbon ratio of aged microplastics reached 0.071, with a mass loss of 48 % and a carbonyl index value of 0.69, making it the most effective method for short-term aging treatment in current research efforts. Theoretical calculations and experimental results demonstrate that a large number of oxygen-containing functional groups are generated on the surface of microplastics after electron beam irradiation, changing their adsorption performance for pollutants. Theoretical calculations show that an increase in oxygen-containing functional groups on the surface leads to a gradual decrease in hydrophobic pollutant adsorption capacity while increasing hydrophilic pollutant adsorption capacity for aged microplastics. Experimental studies were conducted to investigate the adsorption behavior and process of typical pollutants by aged microplastics which conform to pseudo-second-order kinetics and Henry model during the adsorption process, and the adsorption results are consistent with theoretical calculations. The results show that the degradation of microplastics is mainly due to hydroxyl radicals generated by electron beam irradiation, which can break the carbon chain of microplastics and gradually degrade them into small molecular esters and alcohols. Furthermore, studies have shown that microplastics can desorb pollutants in pure water and simulated gastric fluid. Overall, electron beam irradiation is currently the most effective method for degrading microplastics. These results also clearly elucidate the characteristics and mechanisms of the interaction between aged microplastics and organic pollutants, providing further insights for assessing microplastic pollution in real-world environments.
RESUMO
Widely existing heavy metal complexes with high stability and poor biodegradability are intractable to be eliminated by conventional methods. In this study, electron beam (EB) irradiation characterized by rapidly producing strong oxidizing radicals was employed to effectively decompose Cu-ethylenediaminetetraacetic acid (Cu-EDTA) with almost complete elimination at 5 kGy. In terms of heavy metal removal, EB irradiation at relatively low doses was insufficient to remove copper ions, which was only 17.2% under 15 kGy. However, with the extra addition of 8 mM H2O2, such an irradiation dose could result in 99.0% copper ions removal. Mechanism analysis indicated that EB irradiation combined with spontaneously induced Fenton-like reactions were responsible for its excellent performance. The prime function of EB irradiation was to destroy the structure of Cu-EDTA with in-situ produced ·OH, and the subsequent released Cu-based intermediates could activate H2O2 to initiate autocatalytic chain reactions, correspondingly accelerating the degradation of complexes and the liberation of metal ions. Highly oxidative ·OH and O2·- were demonstrated as main active species acted on different positions of Cu-EDTA to realize gradual decarboxylation, synchronously generating low molecular weight compounds. XRD and XPS analysis showed that the released copper ions were mainly precipitated in the form of CuO, Cu(OH)2 and Cu2(OH)2CO3. In general, EB/H2O2 was an adoptable strategy for the disposal of such refractory heavy metal complexes.
Assuntos
Complexos de Coordenação , Metais Pesados , Cobre/química , Ácido Edético/química , Peróxido de Hidrogênio/química , Elétrons , OxirreduçãoRESUMO
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in industrial wastewater have attracted much attention due to their damage to the environment and the human body. Studies have shown that there may be interactions between PAHs and HMs, leading to enhanced toxicity of both pollutants. It has been shown that traditional methods are difficult to treat a combination of PAHs and HMs simultaneously. This paper presented an innovative method for treating PAHs and HMs compound pollutants by electron beam irradiation and achieved the removal of the compound pollutants using a single means. Experiments showed that the absorbed dose at 15 kGy could achieve 100% degradation of NAP and 90% reduction of Cr (â ¥). This article investigated the effects of electron beam removal of PAHs and HMs complex contaminants in various water environmental matrices. The experimental results showed that the degradation of NAP followed the pseudo-first-order dynamics, and the degradation of NAP was more favorable under neutral conditions. Inorganic ions and water quality had little effect on NAP degradation. For electron beam reduction of Cr (â ¥), alkaline conditions were more conducive to reducing Cr (â ¥). Especially, adding K2S2O8 or HCOOH achieved 99% reduction of Cr (â ¥). Experiments showed that â¢OH achieve the degradation of NAP, and eaq- achieve the reduction of Cr (â ¥). The results showed that the degradation of NAP was mainly achieved by benzene ring opening, carboxylation and aldehyde, which proved that the degradation of NAP was mainly caused by â¢OH attack. The toxicity analysis results showed that the electron beam could significantly reduce the toxicity of NAP, and the toxicity of the final product was much lower than NAP, realizing the harmless treatment of NAP. The experimental results showed that electron beam irradiation has faster degradation rates and higher degradation efficiency for NAP and Cr (â ¥) compared to other reported treatment methods.
Assuntos
Poluentes Ambientais , Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Elétrons , Naftalenos , Hidrocarbonetos Policíclicos Aromáticos/análiseRESUMO
Benzothiazole (BTH) is a typical refractory heterocyclic compound that can be used as a photosensitive material in organic synthesis and conditional plant resource research. The extensive use of BTH has led to high BTH concentrations in natural environment, such as in tap water and urine, which tend to inhibit animal hormone synthesis and induce genotoxicity. Traditional wastewater treatment processes cannot effectively remove BTH. Therefore, we aimed to use the electron beam method, an emerging method for pollutant degradation, to degrade BTH in water. Experiments showed that BTH can be effectively degraded (up to 90%) when the electron beam reaches 5 kGy and irradiation conformed perfectly to the pseudo first-order kinetics model. Experimental results showed that acidic conditions are more favorable for electron beam degradation of BTH, while the degradation of most other inorganic ions is inhibited (except SO42-). Hydroxyl radicals (â¢OH) was confirmed to play a major role in degradation by the experiment, and the mineralization rate was greatly increased by the addition of H2O2 and K2S2O8. In addition, our experimental and theoretical calculations showed that the degradation of BTH occurred mainly through the opening of the benzene ring. Theoretical calculations showed that the toxicity of BTH decreased significantly after electron beam degradation, making it an effective way to degrade BTH.