Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
FASEB J ; 38(1): e23357, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085169

RESUMO

Bacterial infection is the main cause of pulpitis. However, whether a dominant bacteria can promote the progression of pulpitis and its underlying mechanism remains unclear. We provided a comprehensive assessment of the microbiota alteration in pulpitis using 16S rRNA sequencing. Fusobacterium nucleatum was the most enriched in pulpitis and played a pathogenic role accelerating pulpitis progression in rat pulpitis model. After odontoblast-like cells cocultured with F. nucleatum, the stimulator of interferon genes (STING) pathway and autophagy were activation. There was a float of STING expression during F. nucleatum stimulation. STING was degraded by autophagy at the early stage. At the late stage, F. nucleatum stimulated mitochondrial Reactive Oxygen Species (ROS) production, mitochondrial dysfunction and then mtDNA escape into cytosol. mtDNA, which escaped into cytosol, caused more cytosolic mtDNA binds to cyclic GMP-AMP synthase (cGAS). The release of IFN-ß was dramatically reduced when mtDNA-cGAS-STING pathway inhibited. STING-/- mice showed milder periapical bone loss and lower serum IFN-ß levels compared with wildtype mice after 28 days F. nucleatum-infected pulpitis model establishment. Our data demonstrated that F. nucleatum exacerbated the progression of pulpitis, which was mediated by the STING-dependent pathway.


Assuntos
Fusobacterium nucleatum , Pulpite , Camundongos , Ratos , Animais , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/metabolismo , Transdução de Sinais , RNA Ribossômico 16S , Nucleotidiltransferases/metabolismo , DNA Mitocondrial/genética
2.
Int Endod J ; 57(8): 1110-1123, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38441141

RESUMO

AIM: Apical periodontitis is an inflammatory disorder triggered by an immune response to bacterial infection, leading to the periapical tissue damage and alveolar resorption. However, the underlying mechanisms driving this process remain elusive, due to the complex and interconnected immune microenvironment within the local lesion site. In this study, the influence of Nlrp3 inflammasome-mediated immune response on the apical periodontitis was investigated. METHODOLOGY: RNA sequencing, immunohistochemistry and ELISA assay were performed to investigate the activation of Nlrp3 inflammasome signalling pathways in the human periapical tissues, including radicular cysts, periapical granulomas and healthy oral mucosa. A mouse model of apical periodontitis was established to study the role of Nlrp3 knockout in periapical bone resorption and Treg cell stability, and the underlying mechanism was explored through in vitro experiments. In vivo Treg cell adoptive transfer was performed to investigate the effects of Treg cells on the progression of apical periodontitis. RESULTS: Our findings find that the hyperactivated Nlrp3 inflammasome is present in human periapical lesions and plays a vital role in the immune-related periapical bone loss. Using a mouse model of apical periodontitis, we observe that Nlrp3 deficiency is resistant to bone resorption. This protection was accompanied by elevated generation and infiltration of local Treg cells that displayed a notable ability to suppress RANKL-dependent osteoclast differentiation. In terms of the mechanism of action, Nlrp3 deficiency directly inhibits the osteoclast differentiation and bone loss through JNK/MAPK and NF-κB pathways. In addition, Nlrp3 induces pyroptosis in the stem cells from apical papilla (SCAPs), and the subsequent release of cytokines affects the stability of Treg cell in periapical lesions, leading indirectly to enhanced bone resorption. In turn, adoptive transfer of both Nlrp3-deficient and wild-type Treg cells effectively prevent the bone erosion during apical periodontitis. CONCLUSIONS: Together, our data identify that the Nlrp3 inflammasome modulates the Treg cell stability and osteoclastogenesis in the periapical inflammatory microenvironment, thus determining the progression of bone erosion.


Assuntos
Modelos Animais de Doenças , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Periodontite Periapical , Linfócitos T Reguladores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Periodontite Periapical/imunologia , Periodontite Periapical/metabolismo , Camundongos , Humanos , Inflamassomos/metabolismo , Inflamassomos/imunologia , Perda do Osso Alveolar/imunologia , Perda do Osso Alveolar/metabolismo , Transdução de Sinais , Camundongos Knockout , Granuloma Periapical/imunologia , Cisto Radicular/imunologia , Camundongos Endogâmicos C57BL
3.
Int Endod J ; 57(7): 951-965, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38411951

RESUMO

AIM: The goal of this study was to investigate the potential effects of an immunotherapeutic drug targeting STING to suppress the overreactive innate immune response and relieve the bone defect in apical periodontitis. METHODOLOGY: We established an apical periodontitis mouse model in Sting-/- and WT mice in vivo. The progression of apical periodontitis was analysed by micro-CT analysis and H&E staining. The expression level and localization of STING in F4/80+ cells were identified by IHC and immunofluorescence staining. RANKL in periapical tissues was tested by IHC staining. TRAP staining was used to detect osteoclasts. To clarify the effect of STING inhibitor C-176 as an immunotherapeutic drug, mice with apical periodontitis were treated with C-176 and the bone loss was identified by H&E, TRAP, RANKL staining and micro-CT. Bone marrow-derived macrophages (BMMs) were isolated from Sting-/- and WT mice and induced to osteoclasts in a lipopolysaccharide (LPS)-induced inflammatory environment in vitro. Moreover, WT BMMs were treated with C-176 to determine the effect on osteoclast differentiation by TRAP staining. The expression levels of osteoclast-related genes were tested using qRT-PCR. RESULTS: Compared to WT mice, the bone resorption and inflammatory cell infiltration were reduced in exposed Sting-/- mice. In the exposed WT group, STING was activated mainly in F4/80+ macrophages. Histological staining revealed the less osteoclasts and lower expression of osteoclast-related factor RANKL in Sting-/- mice. The treatment of the STING inhibitor C-176 in an apical periodontitis mice model alleviated inflammation progression and bone loss, similar to the effect observed in Sting-/- mice. Expression of RANKL and osteoclast number in periapical tissues were also decreased after C-176 administration. In vitro, TRAP staining showed fewer positive cells and qRT-PCR reflected decreased expression of osteoclastic marker, Src and Acp5 were detected during osteoclastic differentiation in Sting-/- and C-176 treated BMMs. CONCLUSIONS: STING was activated and was proven to be a positive factor in bone loss and osteoclastogenesis in apical periodontitis. The STING inhibitor C-176 administration could alleviate the bone loss via modulating local immune response, which provided immunotherapy to the treatment of apical periodontitis.


Assuntos
Modelos Animais de Doenças , Proteínas de Membrana , Osteoclastos , Periodontite Periapical , Animais , Periodontite Periapical/metabolismo , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Osteoclastos/efeitos dos fármacos , Reabsorção Óssea , Microtomografia por Raio-X , Ligante RANK/metabolismo , Ligante RANK/antagonistas & inibidores , Perda do Osso Alveolar , Macrófagos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Phys Rev Lett ; 126(25): 256401, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34241529

RESUMO

Impurity pinning has long been discussed to have a profound effect on the dynamics of an incommensurate charge density wave (CDW), which would otherwise slide through the lattice without resistance. Here, we visualize the impurity pinning evolution of the CDW in ZrTe_{3} using the variable temperature scanning tunneling microscopy. At low temperatures, we observe a quasi-1D incommensurate CDW modulation moderately correlated to the impurity positions, indicating a weak impurity pinning. As we raise the sample temperature, the CDW modulation gets progressively weakened and distorted, while the correlation with the impurities becomes stronger. Above the CDW transition temperature, short-range modulations persist with the phase almost all pinned by impurities. The evolution from weak to strong impurity pinning through the CDW transition can be understood as a result of losing phase rigidity.

5.
Cell Commun Signal ; 19(1): 58, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016129

RESUMO

BACKGROUND: Mitochondrial DNA (mtDNA) is a vital driver of inflammation when it leaks from damaged mitochondria into the cytosol. mtDNA stress may contribute to cyclic GMP-AMP synthase (cGAS) stimulator of interferon genes (STING) pathway activation in infectious diseases. Odontoblasts are the first cells challenged by cariogenic bacteria and involved in maintenance of the pulp immune and inflammatory responses to dentine-invading pathogens. In this study, we investigated that mtDNA as an important inflammatory driver participated in defending against bacterial invasion via cGAS-STING pathway in odontoblasts. METHODS: The normal tissues, caries tissues and pulpitis tissues were measured by western blotting and immunohistochemical staining. Pulpitis model was built in vitro to evaluated the effect of the cGAS-STING pathway in odontoblast-like cell line (mDPC6T) under inflammation. Western blot and real-time PCR were performed to detect the expression of cGAS-STING pathway and pro-inflammatory cytokines. The mitochondrial function was evaluated reactive oxygen species (ROS) generated by mitochondria using MitoSOX Red dye staining. Cytosolic DNA was assessed by immunofluorescent staining and real-time PCR in mDPC6T cells after LPS stimulation. Furthermore, mDPC6T cells were treated with ethidium bromide (EtBr) to deplete mtDNA or transfected with isolated mtDNA. The expression of cGAS-STING pathway and pro-inflammatory cytokines were measured. RESULTS: The high expression of cGAS and STING in caries and pulpitis tissues in patients, which was associated with inflammatory progression. The cGAS-STING pathway was activated in inflamed mDPC6T. STING knockdown inhibited the nuclear import of p65 and IRF3 and restricted the secretion of the inflammatory cytokines CXCL10 and IL-6 induced by LPS. LPS caused mitochondrial damage in mDPC6T, which promoted mtDNA leakage into the cytosol. Depletion of mtDNA inhibited the cGAS-STING pathway and nuclear translocation of p65 and IRF3. Moreover, repletion of mtDNA rescued the inflammatory response, which was inhibited by STING knockdown. CONCLUSION: Our study systematically identified a novel mechanism of LPS-induced odontoblast inflammation, which involved mtDNA leakage from damaged mitochondria into the cytosol stimulating the cGAS-STING pathway and the inflammatory cytokines IL-6 and CXCL10 secretion. The mtDNA-cGAS-STING axis could be a potent therapeutic target to prevent severe bacterial inflammation in pulpitis. Video Abstract.


Assuntos
DNA Mitocondrial/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Odontoblastos/metabolismo , Odontoblastos/patologia , Transdução de Sinais , Linhagem Celular , Citosol/metabolismo , Cárie Dentária/metabolismo , Cárie Dentária/patologia , Humanos , Lipopolissacarídeos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Pulpite/metabolismo , Pulpite/patologia
6.
Life Sci ; 352: 122797, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38917871

RESUMO

Caries and pulpitis remain a major global disease burden and affect the quality of life of patients. Odontoblasts are key players in the progression of caries and pulpitis, not only secreting and mineralizing to form dentin, but also acting as a wall of defense to initiate immune defenses. Mitochondrion is an information processor for numerous cellular activities, and dysregulation of mitochondrion homeostasis not only affects cellular metabolism but also triggers a wide range of diseases. Elucidating mitochondrial homeostasis in odontoblasts can help deepen scholars' understanding of odontoblast-associated diseases. Articles on mitochondrial homeostasis in odontoblasts were evaluated for information pertinent to include in this narrative review. This narrative review focused on understanding the complex interplay between mitochondrial homeostasis in odontoblasts under physiological and pathological conditions. Furthermore, mitochondria-centered therapeutic strategies (including mitochondrial base editing, targeting platforms, and mitochondrial transplantation) were emphasized by resolving key genes that regulate mitochondrial function. Mitochondria are involved in odontoblast differentiation and function, and act as mitochondrial danger-associated molecular patterns (mtDAMPs) to mediate odontoblast pathological progression. Novel mitochondria-centered therapeutic strategies are particularly attractive as emerging therapeutic approaches for the maintenance of mitochondrial homeostasis. It is expected to probe key events of odontoblast differentiation and advance the clinical resolution of dentin formation and mineralization disorders and odontoblast-related diseases.

7.
Nat Commun ; 15(1): 4373, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782908

RESUMO

The latest discovery of high temperature superconductivity near 80 K in La3Ni2O7 under high pressure has attracted much attention. Many proposals are put forth to understand the origin of superconductivity. The determination of electronic structures is a prerequisite to establish theories to understand superconductivity in nickelates but is still lacking. Here we report our direct measurement of the electronic structures of La3Ni2O7 by high-resolution angle-resolved photoemission spectroscopy. The Fermi surface and band structures of La3Ni2O7 are observed and compared with the band structure calculations. Strong electron correlations are revealed which are orbital- and momentum-dependent. A flat band is formed from the Ni-3d z 2 orbitals around the zone corner which is ~ 50 meV below the Fermi level and exhibits the strongest electron correlation. In many theoretical proposals, this band is expected to play the dominant role in generating superconductivity in La3Ni2O7. Our observations provide key experimental information to understand the electronic structure and origin of high temperature superconductivity in La3Ni2O7.

8.
Cell Prolif ; 56(9): e13442, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37086012

RESUMO

Mitochondrial transfer is emerging as a promising therapeutic strategy for tissue repair, but whether it protects against pulpitis remains unclear. Here, we show that hyperactivated nucleotide-binding domain and leucine-rich repeat protein3 (NLRP3) inflammasomes with pyroptotic cell death was present in pulpitis tissues, especially in the odontoblast layer, and mitochondrial oxidative stress (OS) was involved in driving this NLRP3 inflammasome-induced pathology. Using bone marrow mesenchymal stem cells (BMSCs) as mitochondrial donor cells, we demonstrated that BMSCs could donate their mitochondria to odontoblasts via tunnelling nanotubes (TNTs) and, thus, reduce mitochondrial OS and the consequent NLRP3 inflammasome-induced pyroptosis in odontoblasts. These protective effects of BMSCs were mostly blocked by inhibitors of the mitochondrial function or TNT formation. In terms of the mechanism of action, TNF-α secreted from pyroptotic odontoblasts activates NF-κB signalling in BMSCs via the paracrine pathway, thereby promoting the TNT formation in BMSCs and enhancing mitochondrial transfer efficiency. Inhibitions of NF-κB signalling and TNF-α secretion in BMSCs suppressed their mitochondrial donation capacity and TNT formation. Collectively, these findings demonstrated that TNT-mediated mitochondrial transfer is a potential protective mechanism of BMSCs under stress conditions, suggesting a new therapeutic strategy of mitochondrial transfer for dental pulp repair.


Assuntos
Pulpite , Piroptose , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Pulpite/metabolismo , Polpa Dentária/metabolismo , Mitocôndrias/metabolismo
9.
J Endod ; 49(9): 1138-1144, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37331649

RESUMO

INTRODUCTION: Bone loss is strongly associated with the immunologic milieu in apical periodontitis (AP). Tertiary lymphoid structures (TLSs) are organized lymphoid cell aggregates that form in nonlymphoid tissues under persistent inflammatory circumstances. To date, there has been no relevant report of TLSs in periapical lesions. This work aimed to investigate the formation and potential function of TLSs in AP. METHODS: Tissues from human apical lesions (n = 61) and healthy oral mucosa (n = 5) were collected. Immunohistochemistry and multiplex immunofluorescence were used to detect the formation of TLSs. Correlation analyses were performed between clinical variables and TLSs. In addition, immunohistochemistry was used to evaluate the expression of interleukin-1 beta, interleukin-6, receptor activator of nuclear factor kappa-B ligand, and macrophage subsets in the apical lesions. RESULTS: Periapical granulomas (n = 24) and cysts (n = 37) were identified by histologic evaluation. TLSs, composed of B-cell and T-cell clusters, developed in periapical granulomas and radicular cysts. The CXC-chemokine ligand 13, its receptor CXC-chemokine receptor 5, follicular dendritic cells, and high endothelial venules were localized in TLSs. The quantity and size of TLSs were positively associated with bone loss in AP. Moreover, proinflammatory cytokines and macrophage subsets were also substantially elevated in TLS regions of apical lesions. CONCLUSIONS: The formation of TLSs in periapical granulomas and cysts was closely associated with persistent immune responses and bone loss in apical lesions. TLSs provide an updated insight into the complicated immune response process in AP.


Assuntos
Granuloma Periapical , Periodontite Periapical , Cisto Radicular , Estruturas Linfoides Terciárias , Humanos , Granuloma Periapical/metabolismo , Ligantes , Cisto Radicular/metabolismo
10.
Nat Commun ; 14(1): 4089, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429852

RESUMO

Kagome lattices of various transition metals are versatile platforms for achieving anomalous Hall effects, unconventional charge-density wave orders and quantum spin liquid phenomena due to the strong correlations, spin-orbit coupling and/or magnetic interactions involved in such a lattice. Here, we use laser-based angle-resolved photoemission spectroscopy in combination with density functional theory calculations to investigate the electronic structure of the newly discovered kagome superconductor CsTi3Bi5, which is isostructural to the AV3Sb5 (A = K, Rb or Cs) kagome superconductor family and possesses a two-dimensional kagome network of titanium. We directly observe a striking flat band derived from the local destructive interference of Bloch wave functions within the kagome lattice. In agreement with calculations, we identify type-II and type-III Dirac nodal lines and their momentum distribution in CsTi3Bi5 from the measured electronic structures. In addition, around the Brillouin zone centre, [Formula: see text] nontrivial topological surface states are also observed due to band inversion mediated by strong spin-orbit coupling.

11.
Nat Commun ; 13(1): 273, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022418

RESUMO

The Kagome superconductors AV3Sb5 (A = K, Rb, Cs) have received enormous attention due to their nontrivial topological electronic structure, anomalous physical properties and superconductivity. Unconventional charge density wave (CDW) has been detected in AV3Sb5. High-precision electronic structure determination is essential to understand its origin. Here we unveil electronic nature of the CDW phase in our high-resolution angle-resolved photoemission measurements on KV3Sb5. We have observed CDW-induced Fermi surface reconstruction and the associated band folding. The CDW-induced band splitting and the associated gap opening have been revealed at the boundary of the pristine and reconstructed Brillouin zones. The Fermi surface- and momentum-dependent CDW gap is measured and the strongly anisotropic CDW gap is observed for all the V-derived Fermi surface. In particular, we have observed signatures of the electron-phonon coupling in KV3Sb5. These results provide key insights in understanding the nature of the CDW state and its interplay with superconductivity in AV3Sb5 superconductors.

12.
Cell Death Discov ; 7(1): 381, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887391

RESUMO

Alleviating odontoblast inflammation is crucial to control the progression of pulpitis. Mitochondrial DNA (mtDNA) is a vital driver of inflammation when it leaks from mitochondria of inflamed odontoblasts into the cytosol. Bacteria-induced inflammation leads to a novel type of cell death named pyroptosis. The canonical pyroptosis is a gasdermin (GSDM)-dependent cytolytic programmed cell death characterized by cell swelling and pore formation in the plasma membrane. To date, whether odontoblast cytosolic mtDNA regulates dental pulp inflammation through the canonical pyroptosis pathway remains to be elucidated. In this study, high gasdermin D (GSDMD) expression was detected in human pulpitis. We found that LPS stimulation of mDPC6T cells promoted BAX translocation from the cytosol to the mitochondrial membrane, leading to mtDNA release. Moreover, overexpression of isolated mtDNA induced death in a large number of mDPC6T cells, which had the typical appearance of pyroptotic cells. Secretion of the inflammatory cytokines CXCL10 and IFN-ß was also induced by mtDNA. These results suggest that cytosolic mtDNA participates in the regulation of odontoblast inflammation through GSDMD-mediated pyroptosis in vitro. Interestingly, after overexpression of mtDNA, the expression of inflammatory cytokines CXCL10 and IFN-ß was increased and not decreased in GSDMD knockdown mDPC6T cells. We further proposed a novel model in which STING-dependent inflammation in odontoblast-like cell is a compensatory mechanism to control GSDMD-mediated pyroptosis, jointly promoting the immune inflammatory response of odontoblasts. Collectively, these findings provide the first demonstration of the role of the mtDNA-GSDMD-STING in controlling odontoblast inflammation and a detailed description of the underlying interconnected relationship.

13.
J Phys Condens Matter ; 24(8): 084004, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22310060

RESUMO

The mechanical properties of molecular self-assembled monolayers (SAMs) play an important role in understanding the interactions between molecules in the self-assembly, the interactions between molecules and substrate, and thus the formation mechanism of SAMs. Using a high-resolution noncontact atomic force microscope (NC-AFM) combined with a scanning tunneling microscope (STM), we have successfully obtained the sub-molecular resolution of a H(2)Pc self-assembled monolayer grown on a Pb(111) surface. A 2 × 2 superstructure was observed in both AFM and STM topographic images. The lateral critical force of removing a H(2)Pcmolecule from its SAM and moving a single H(2)Pc molecule on Pb(111) were measured. An oscillation of the critical force along the edge of the H(2)Pc SAM with a period of two molecular sites was observed, which can be attributed to the 2 × 2 superstructure. The lateral critical force caused by intermolecular interaction was found to be 25 pN on average and is typically two times larger than the molecule-substrate interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA