Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pharmacol Rev ; 74(4): 962-983, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36779351

RESUMO

Subcutaneous and inhaled insulins are associated with needle phobia, lipohypertrophy, lipodystrophy, and cough in diabetes treatment. Oral nanoinsulin has been developed, reaping the physiologic benefits of peroral administration. This review profiles intestinal receptors exploitable in targeted delivery of oral nanoinsulin. Intestinal receptor targeting improves oral insulin bioavailability and sustains blood glucose-lowering response. Nonetheless, these studies are conducted in small animal models with no optimization of insulin dose, targeting ligand type and content, and physicochemical and molecular biologic characteristics of nanoparticles against the in vivo/clinical diabetes responses as a function of the intestinal receptor population characteristics with diabetes progression. The interactive effects between nanoinsulin and antidiabetic drugs on intestinal receptors, including their up-/downregulation, are uncertain. Sweet taste receptors upregulate SGLT-1, and both have an undefined role as new intestinal targets of nanoinsulin. Receptor targeting of oral nanoinsulin represents a viable approach that is relatively green, requiring an in-depth development of the relationship between receptors and their pathophysiological profiles with physicochemical attributes of the oral nanoinsulin. SIGNIFICANCE STATEMENT: Intestinal receptor targeting of oral nanoinsulin improves its bioavailability with sustained blood glucose-lowering response. Exploring new intestinal receptor and tailoring the design of oral nanoinsulin to the pathophysiological state of diabetic patients is imperative to raise the insulin performance to a comparable level as the injection products.


Assuntos
Diabetes Mellitus , Insulina , Nanopartículas , Animais , Glicemia , Diabetes Mellitus/tratamento farmacológico , Glucose/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/química , Insulina/uso terapêutico , Insulina Regular Humana/uso terapêutico , Nanopartículas/química
2.
Pharm Res ; 40(5): 1037-1055, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36385216

RESUMO

Proteins and peptides-based therapeutics are making substantial access to the market due to their obvious advantages of strong potency, high specificity and desirable safety profile. However, most clinical products are mainly delivered via parenteral route with inferior convenience. Lung is an attractive non-invasive alternative passage for systemic administration of biologics with numerous outstanding features, as examples of large absorptive surface area, extensive vascularization and mild local microenvironment. Even so, mucociliary clearance, alveolar macrophage phagocytosis, enzymatic metabolism, pulmonary surfactant adsorption and limited epithelium permeability constitute major obstacles affecting the systemic absorption of inhaled proteins and peptides. This article begins by giving a brief overview of challenges for the systemic absorption of inhaled proteins and peptides, and then goes on to a comprehensive review of possible strategies for enhanced pulmonary absorption, including chemical modification, addition of protease inhibitors, incorporation of absorption enhancers, modification with fusion proteins and development of particulate-based drug delivery systems. These strategies can provide enhanced transmembrane absorption capacity while avoiding pulmonary clearance, offering a valuable reference for designing pulmonary delivery systems of protein and peptide drugs.


Assuntos
Peptídeos , Proteínas , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Absorção Fisiológica
3.
AAPS PharmSciTech ; 21(2): 55, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907709

RESUMO

Natural polymers are promising as the carrier of matrix-based sustained release tablets but limited by their diversity in source and structure properties. Our previous studies found that chitosan (CS)- and alginate (SA)-based tablets can form self-assembled polyelectrolyte complex (PEC) film on the surface, which controlled drug release with a novel mechanism. To elucidate whether PEC-based sustained drug delivery system could weaken the influence of single-matrix material diversity on drug release behavior, taking theophylline as a drug model, the effect of SA structure properties, including viscosity, G/M ratio, SA salt type, and degree of esterification on drug release profiles, swelling, and erosion of CS-SA composite system was investigated. The results showed that the viscosity, G content, salt type, and esterification degree of SA had a remarkable influence on drug release when SA alone was used as a matrix, but little effect of these parameters on drug release was observed in CS-SA combination system. SA of low viscosity is superior in controlling drug release from CS-SA combination system. Potassium, magnesium salt of SA, and esterified SA can help form PEC of higher thickness with different swelling and erosion extent. In conclusion, this study demonstrated that drug release diversity due to SA structure difference can be well eradicated by using CS-SA combination system, which is a promising strategy to manufacture natural polymer-based products with constant quality.


Assuntos
Alginatos/química , Quitosana/química , Teofilina/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Comprimidos/química , Viscosidade
4.
AAPS PharmSciTech ; 18(8): 3172-3181, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28536795

RESUMO

The objective of this study was to explore the feasibility of using alginate as a potential stabilizer of nanosuspension and elaborate the corresponding stabilization mechanism. Using lovastatin as a Biopharmaceutics Classification System (BCS) II drug model, alginate-stabilized nanosuspension was fabricated by the high-pressure homogenization method. The particle size, zeta potential, short-term stability, and dissolution behavior of the nanosuspension were characterized. Thereafter, the surface morphology, crystallinity, redispersability, and stability of the spray-dried nanosuspension were investigated. The spray-dried powder was further compressed into tablets via direct compression, and stressing test was carried out to investigate the stability of nanocrystal loaded tablets. It was demonstrated that alginate could stabilize nanocrystals by providing both electrostatic and steric stabilization, and the effective concentration was much lower than that of the commonly used stabilizers. Good redispersability was achieved after spray drying of the nanosuspension, and the existing state of lovastatin was not changed as indicated by X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) studies. The stress test indicated that nanocrystal-loaded tablets possessed a favorable stability. In conclusion, alginate could be used as a potential stabilizer of nanosuspension with preferable stabilizing ability at a very low concentration either in liquid or in solid state.


Assuntos
Alginatos/química , Alginatos/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Varredura Diferencial de Calorimetria/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Tamanho da Partícula , Solubilidade , Suspensões/química , Suspensões/metabolismo , Comprimidos , Difração de Raios X/métodos
5.
Yao Xue Xue Bao ; 51(10): 1616-21, 2016 10.
Artigo em Zh | MEDLINE | ID: mdl-29932610

RESUMO

To investigate factors influencing the intranasal absorption of rivastigmine hydrogen tartrate (RHT), we studied the pharmacokinetics of RHT after intranasal administration and evaluated its brain targeting behavior. In situ rat nasal perfusion model was used in the study and pH impact was examined on the intranasal absorption of RHT. High performance liquid chromatography (HPLC) method was established to measure RHT concentration in the plasma and brain tissue after intranasal and intravenous administration. The pharmacokinetic parameters, drug targeting index(DTI), and nose-to-brain direct transport percentage (DTP) were calculated. It was demonstrated that the intranasal absorption mechanism of RHT was passive diffusion. The absorption rate was highest at pH 6.0. The absolute bioavailability of intranasally administrated RHT was 73.58%. Compared with that of intravenous administration, RHT absorption into the brain was faster and more efficient after intranasal delivery, and the DTI value was 195.27% of intravenous injection. Moreover, 48.79% of the drug can be absorbed directly from the nose into the brain without systematic circulation. Meanwhile, drug elimination half-time in the brain was prolonged by 1.4 fold compared to that of intravenous injection. In conclusion, intranasal administration of RHT not only improves drug absorption into the system, but also enhances drug absorption rate and content in the brain remarkably, which is an advantage in the treatment of central nervous system-related diseases.


Assuntos
Encéfalo/metabolismo , Sistemas de Liberação de Medicamentos , Absorção Nasal , Rivastigmina/farmacocinética , Administração Intranasal , Animais , Disponibilidade Biológica , Transporte Biológico , Injeções Intravenosas , Ratos
6.
Mol Pharm ; 12(3): 816-25, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25587749

RESUMO

The objective of this study is to demonstrate the feasibility of using solubility parameter as guidance for the design and identification of a stable micellar system with a high drug loading capacity for oral drug delivery. Using hydroxycamptothecin (HCPT) as a model drug, the effect of three hydrophobic blocks (fatty glycerides) grafted onto chitosan on the drug loading and stability of HCPT-loaded micellar nanoparticles formed by pH precipitation method were studied systematically. The Flory-Huggins interaction parameter (χFH) calculated by the group contribution method (GCM) and molecular dynamics simulation (MDS) was used to assess the compatibility between HCPT and the copolymers. The predicted order of compatibility between three chitosan derivatives and HCPT was verified experimentally. A high drug loading and remarkably stable micellar system for oral administration based on succinylated glycerol monooleate-chitosan was discovered in this study. Our study suggests that the miscibility between drug and copolymer is crucial to drug loading and stability of the micellar system. Thus, the calculation of χFH using GCM and MDS methods is useful for guiding the design or screening of a suitable copolymer for preparing drug-loaded micellar nanocarrier systems.


Assuntos
Sistemas de Liberação de Medicamentos , Nanocápsulas/química , Biofarmácia , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Camptotecina/química , Quitosana/análogos & derivados , Quitosana/química , Estabilidade de Medicamentos , Humanos , Técnicas In Vitro , Micelas , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Solubilidade
7.
Drug Dev Ind Pharm ; 41(4): 552-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24495272

RESUMO

In this study, the in vivo oral absorption of a nanocrystal tablet formulation of a BCS II poorly water-soluble drug was compared with that of its water-soluble salt form. Silybin is used as the model drug, and its nanosuspension was prepared by high-pressure homogenization. Effect of process and formulation parameters on properties of the nansuspensions was investigated. Dried powder of the nanosuspension was prepared by spray drying and used for preparing tablets. A pharmacokinetic study was performed in Beagle dogs to compare the absorption for tablets of silybin nanocrystals and silybin meglumine. In vivo absorption of nanocrystal silybin tablet in Beagle dogs was determined. X-ray powder diffraction results indicated that silybin existed in a crystalline state after homogenization. In vivo absorption study in rats showed that the peroral absorption of silybin was enhanced remarkably by decreasing particle size. In vivo absorption of nanocrystal silybin tablet in Beagle dogs was comparable with that of the commercially available tablet of the water-soluble salt form of silybin. In conclusion, it is possible to increase the bioavailability of poorly soluble drugs by preparing its water-soluble derivative.


Assuntos
Antioxidantes/farmacocinética , Nanopartículas/química , Absorção pela Mucosa Oral , Silimarina/farmacocinética , Animais , Animais Endogâmicos , Antioxidantes/análise , Antioxidantes/química , Disponibilidade Biológica , Cães , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Excipientes/química , Masculino , Meglumina/química , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Tamanho da Partícula , Pós , Ratos Wistar , Silibina , Silimarina/sangue , Silimarina/química , Suspensões , Comprimidos
8.
Drug Dev Ind Pharm ; 41(6): 927-33, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24785575

RESUMO

Spray drying experiments of an itraconazole nanosuspension were conducted to generate a dry nanocrystal powder which was subsequently formulated into a tablet formulation for direct compression. The nanosuspension was prepared by high pressure homogenization and characterized for particle-size distribution and surface morphology. A central composite statistical design approach was applied to identify the optimal drug-to-excipient ratio and spray drying temperature. It was demonstrated that the spray drying of a nanosuspension with a mannitol-to-drug mass ratio of 4.5 and at an inlet temperature of 120 °C resulted in a dry powder with the smallest increase in particle size as compared with that of the nanosuspension. X-ray diffraction results indicated that the crystalline structure of the drug was not altered during the spray-drying process. The tablet formulation was identified by determining the micromeritic properties such as flowability and compressibility of the powder mixtures composed of the spray dried nanocrystal powder and other commonly used direct compression excipients. The dissolution rate of the nanocrystal tablets was significantly enhanced and was found to be comparable to that of the marketed Sporanox®. No statistically significant difference in oral absorption between the nanocrystal tablets and Sporanox® capsules was found. In conclusion, the nanosuspension approach is feasible to improve the oral absorption of a BCS Class II drug in a tablet formulation and capable of achieving oral bioavailability equivalent to other well established oral absorption enhancement method.


Assuntos
Antifúngicos/administração & dosagem , Excipientes/química , Itraconazol/administração & dosagem , Manitol/química , Administração Oral , Animais , Antifúngicos/química , Antifúngicos/farmacocinética , Disponibilidade Biológica , Química Farmacêutica/métodos , Cristalização , Cães , Estudos de Viabilidade , Itraconazol/química , Itraconazol/farmacocinética , Masculino , Nanopartículas , Tamanho da Partícula , Pós , Solubilidade , Comprimidos , Água/química , Difração de Raios X
9.
Yao Xue Xue Bao ; 50(7): 814-23, 2015 Jul.
Artigo em Zh | MEDLINE | ID: mdl-26552141

RESUMO

To provide theoretical and practical basis for the successful formulation design of physically-mixed inhalation dry powder of proteins and peptides, related references were collected, analyzed and summarized. In this review drug micronization technology and commonly used carriers for inhalation dry powder preparation were introduced. For proteins and peptides, supercritical fluid technology and spray-drying are more suitable because of their capabilities of keeping drug activity. Being approved by U. S. Food and Drug Administration, lactose has been extensively used as carriers in many inhalation products. Formulation and process factors influencing drug deposition in the lung, including carrier properties, drug-carrier ratio, blending order, mixing methods, mixing time and the interaction between drug and carrier, were elucidated. The size, shape and surface properties of carries all influence the interaction between drug and carrier. Besides, influence of micromeritic properties of the dry powder, such as particle size, shape, density, flowability, charge, dispersibility and hygroscopicity, on drug deposition in the lung was elaborated. Among these particle size plays the most crucial role in particle deposition in the lung. Moreover, based on the mechanisms of powder dispersity, some strategies to improve drug lung deposition were put forward, such as adding carrier fines, adding adhesive-controlling materials and reprocessing micronized drug. In order to design physically-mixed inhalation dry powder for proteins and peptides with high lung deposition, it is essential to study drug-carriers interactions systematically and illustrate the potential influence of formulation, process parameters and micromeritic properties of the powder.


Assuntos
Administração por Inalação , Peptídeos/administração & dosagem , Pós/administração & dosagem , Portadores de Fármacos/química , Inaladores de Pó Seco , Lactose/química , Tamanho da Partícula , Propriedades de Superfície , Tecnologia Farmacêutica
10.
Yao Xue Xue Bao ; 50(8): 1045-51, 2015 Aug.
Artigo em Zh | MEDLINE | ID: mdl-26669007

RESUMO

The objectives of this study are to prepare resveratrol loaded mixed micelles composed of poloxamer 403 and poloxamer 407, and optimize the formulation in order to achieve higher drug solubility and sustained drug release. Firstly, a thin-film hydration method was utilized to prepare the micelles. By using drug-loading, encapsulation yield and particle size of the micelles as criteria, influence of three variables, namely poloxamer 407 mass fraction, amount of water and feeding of resveratrol, on the quality of the micelles was optimized with a central composite design method. Steady fluorescence measurement was carried out to evaluate the critical micelle concentration of the carriers. Micelle stability upon dilution with simulated gastric fluid and simulated intestinal fluid was investigated. The in vitro release of resveratrol from the mixed micelles was monitored by dialysis method. It was observed that the particle size of the optimized micelle formulation was 24 nm, with drug-loading 11.78%, and encapsulation yield 82.51%. The mixed micelles increased the solubility of resveratrol for about 197 times. Moreover, the mixed micelles had a low critical micelle concentration of 0.05 mg · mL(-1) in water and no apparent changes in particle size and drug content were observed upon micelles dilution, indicating improved kinetic stability. Resveratrol was released from the micelles in a controlled manner for over 20 h, and the release process can be well described by Higuchi equation. Therefore, resveratrol-loaded poloxamer 403/407 mixed micelles could improve the solubility of resveratrol significantly and sustained drug release behavior can be achieved.


Assuntos
Portadores de Fármacos/química , Micelas , Poloxâmero/química , Estilbenos/química , Fluorescência , Cinética , Tamanho da Partícula , Resveratrol , Solubilidade , Água
11.
Yao Xue Xue Bao ; 50(9): 1180-5, 2015 Sep.
Artigo em Zh | MEDLINE | ID: mdl-26757557

RESUMO

Using high pressure homogenization method combined with spray-drying, budesonide-loaded chitosan microparticles were prepared and the in vitro release profile was investigated. The microparticles were then blended with lactose using a vortex mixer, influence of mixing speed, mixing time on drug recovery rate and content homogeneity were investigated. Meanwhile, influence of lactose content on drug recovery rate, content homogeneity, powder flowability and in vitro deposition were studied. It turned out that budesonide was released from the microparicles in a sustained manner, with fine particle fraction as high as 46.0%, but the powder flowability was poor. After blending with 10 times of lactose, the drug recovery rate was 96.5%, with relative standard deviation of drug content 2.5%, and fine particle fraction of the formulation increased to 59.6% with good flowability. It's demonstrated that using a vortex mixer, budesonide sustained-release dry powder for inhalation with good recovery and content homogeneity could be prepared, the formulation had good flowability and was suitable for pulmonary inhaling.


Assuntos
Budesonida/química , Lactose/química , Pós , Administração por Inalação , Química Farmacêutica , Quitosana , Preparações de Ação Retardada/química , Portadores de Fármacos , Tamanho da Partícula
12.
Nanotechnology ; 25(12): 125102, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24576956

RESUMO

Metastasis, the main cause of cancer related deaths, remains the greatest challenge in cancer treatment. Disulfiram (DSF), which has multi-targeted anti-tumor activity, was encapsulated into redox-sensitive shell crosslinked micelles to achieve intracellular targeted delivery and finally inhibit tumor growth and metastasis. The crosslinked micelles demonstrated good stability in circulation and specifically released DSF under a reductive environment that mimicked the intracellular conditions of tumor cells. As a result, the DSF-loaded redox-sensitive shell crosslinked micelles (DCMs) dramatically inhibited cell proliferation, induced cell apoptosis and suppressed cell invasion, as well as impairing tube formation of HMEC-1 cells. In addition, the DCMs could accumulate in tumor tissue and stay there for a long time, thereby causing significant inhibition of 4T1 tumor growth and marked prevention in lung metastasis of 4T1 tumors. These results suggested that DCMs could be a promising delivery system in inhibiting the growth and metastasis of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Dissulfiram/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Maleatos/administração & dosagem , Oxirredução/efeitos dos fármacos , Poliestirenos/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Micelas
13.
Xenobiotica ; 44(9): 785-91, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24641105

RESUMO

In Traditional Chinese Medicine, liver targeting is usually achieved by coadministration with Vinegar-baked Radix Bupleuri (VBRB), but the mechanism is unclear. In this paper, the influence of VBRB on the activity of ß-glucuronidase was investigated and compared with that of saikosaponins. The activity of ß-glucuronidase was measured by microplate reader using a 4-nitrophenyl-ß-d-glucuronide substrate. The change of 4-nitrophenol content was used to characterize the activity of ß-glucuronidase. Bupleurum chinenes were found to be the inhibitor of ß-glucuronidase. The inhibition rate of Bupleurum chinenes extracts BC1 (high molecular weight polysaccharides), BC2 (ethanol soluble/water insoluble component), BC3 (extracted by n-butanol, soluble in water), and BC4 (low molecular weight water soluble parts) on the activity of ß-glucuronidase was found to be 45.15%, 33.94%, 24.94%, and 34.54%, respectively, after 1 h incubation, with BC1 showing the highest inhibition rate. In contrast, the saikosaponins were demonstrated to be the promoter of ß-glucuronidase, with promotion rates of 333.56%, 217.04%, 247.87%, 149.75%, and 92.50% for saikosaponin standard samples A, B, B2, C, and D, respectively, (p<0.05). In conclusion, inhibiting the activity of ß-glucuronidase might be one of the reasons why VBRB could influence drug distribution upon its coadministration with other drugs. Since saikosaponins and VBRB extracts have opposite effect, more attention should be paid to the content of saikosaponins in the extracts upon its application.


Assuntos
Ácido Acético/química , Bupleurum/química , Medicamentos de Ervas Chinesas/farmacologia , Glucuronidase/metabolismo , Ácido Oleanólico/análogos & derivados , Saponinas/farmacologia , 1-Butanol/metabolismo , Glucuronatos/metabolismo , Glucuronidase/antagonistas & inibidores , Fígado/efeitos dos fármacos , Fígado/metabolismo , Nitrofenóis/metabolismo , Ácido Oleanólico/farmacologia
14.
Xenobiotica ; 44(10): 861-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24779639

RESUMO

1. In this article, the modulatory effects of extracts from vinegar-baked Radix Bupleuri (VBRB) and saikosaponins on the activity of CYP1A2, CYP2C9 and CYP3A4 were investigated in vitro. 2. Microsomal in vitro incubation method was utilized to simulate metabolic reaction under physiological environment by incubating the marker with liver microsomes in the absence or presence of VBRB and saikosaponins. The contents of 4-acetamidophenol, 6ß-hydroxyltestosterone and 4-hydroxydiclofenac, the metabolites of phenacetin, testosterone and diclofenac, which were selected as specific probe drugs of CYP1A2, CYP2C9 and CYP3A4, respectively, were analyzed by high-performance liquid chromatography. 3. The production of the metabolites was incubation time dependent. The modulatory effects of different VBRB extracts and saikosaponins on CYP isoforms increased with concentration. Among all the extracts studied, BC1 has a strong inhibition effect compared to the three CYP isoforms tested, while the others have only significant inhibition on the activity of CYP2C9. 4. This in vitro study demonstrated that various extracts of VBRB tested in this study have negligible potential to interfere with CYP1A2- and CYP3A4-metabolized drugs; risk of herb-drug interaction might occur when VBRB is concurrently taken with CYP2C9 substrates.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Interações Ervas-Drogas , Ácido Oleanólico/análogos & derivados , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Ácido Acético/química , Animais , Bupleurum/química , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Isoenzimas/metabolismo , Masculino , Camundongos , Microssomos Hepáticos , Ácido Oleanólico/farmacologia , Extratos Vegetais/química , Fatores de Tempo
15.
Drug Discov Today ; 29(7): 104019, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729235

RESUMO

Inhalation drug delivery is superior for local lung disease therapy. However, there are several unique absorption barriers for inhaled drugs to overcome, including limited drug deposition at the target site, mucociliary clearance, pulmonary macrophage phagocytosis, and systemic exposure. Moreover, the respiratory disease state can affect or even destroy the physiology of the lung, thus influencing the in vivo fate of inhaled particles compared with that in healthy lungs. Nevertheless, limited information is available on this effect. Thus, in this review, we present pathological changes of the lung microenvironment under varied respiratory diseases and their influence on the in vivo fate of inhaled particles; such insights could provide a basis for rational inhalation particle design based on specific disease states.


Assuntos
Pneumopatias , Pulmão , Humanos , Administração por Inalação , Animais , Pneumopatias/tratamento farmacológico , Pneumopatias/patologia , Pulmão/metabolismo , Sistemas de Liberação de Medicamentos , Microambiente Celular , Depuração Mucociliar
16.
Eur J Pharm Biopharm ; 198: 114271, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537907

RESUMO

Liposome is a promising carrier for pulmonary drug delivery and the nano-sized liposomes have been widely investigated in the treatment of lung diseases. However, there still lack the knowledge of micron-sized liposomes for lung delivery, which have more advantages in terms of drug loading and sustained drug release capacity. The micron-sized liposomes can be classified into multilamellar liposome (MLL) and multivesicular liposome (MVL) according to their microstructure, thus, this study focused on exploring how the micron-sized liposomes with different microstructure and phospholipid composition influence their interaction with the lung. The MLL and MVL were prepared from different types of phospholipids (including soya phosphatidylcholine (SPC), egg yolk phosphatidylcholine (EPC), and dipalmitoyl phosphatidylcholine (DPPC)) with geometric diameter around 5 µm, and their in vitro pulmonary cell uptake, in vivo lung retention and organ distribution were investigated. The results showed that the microstructure of liposomes didn't affect pulmonary cellular uptake, in vivo lung retention and organ distribution. MLL and MVL prepared with the same phospholipid had similar cellular uptake in both NR8383 cells and A549 cells, and both of them possessed prolonged lung retention and limited distribution in other organs during 72 h. Notably, the phospholipid type presented remarkable influence on liposomes' interaction with the lung. SPC-based liposomes exhibited higher cellular uptake than the DPPC-based ones in both NR8383 cells and A549 cells, also possessed a better lung retention behavior. In conclusion, this study might provide theoretical knowledge for designing micron-sized liposomes intended for lung delivery.


Assuntos
Lipossomos , Fosfolipídeos , Lipossomos/química , Fosfolipídeos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Pulmão/metabolismo
17.
Int J Pharm ; 654: 123930, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38387820

RESUMO

Ginsenoside F1 (GF1) is a potential drug candidate for the treatment of Alzheimer's disease. Nevertheless, its low oral bioavailability and poor solubility limit clinical application. By utilizing either a direct or indirect approach, intranasal administration is a non-invasive drug delivery method that can deliver drugs to the brain rapidly. But large molecule drug delivered to the brain through intranasal administration may be insufficient to reach required concentration for therapeutic effect. In this study, using GF1 as a model drug, the feasibility of intranasal administration in combination with absorption enhancers to increase brain distribution of GF1 was explored. First of all, the appropriate absorption enhancers were screened by in situ nasal perfusion study. GF1-HP-ß-CD inclusion complex was prepared and characterized. Thereafter, in vivo absorption of GF1 after intranasal or intravenous administration of its inclusion complex with/without absorption enhancers was investigated, and safety of the formulations was evaluated. The results showed that 2% Solutol HS 15 was a superior absorption enhancer. HP-ß-CD inclusion complex improved GF1 solubility by 150 fold. Following intranasal delivery, the absolute bioavailability of inclusion complex was 46%, with drug brain targeting index (DTI) 247% and nose-to-brain direct transport percentage (DTP) 58%. Upon further addition of 2% Solutol HS 15, the absolute bioavailability was increased to 75%, with DTI 315% and DTP 66%. Both nasal cilia movement and biochemical substances (total protein and lactate dehydrogenase) leaching studies demonstrated 2% Solutol HS 15 was safe to the nasal mucosa. In conclusion, intranasal administration combining with safe absorption enhancers is an effective strategy to enhance drug distribution in the brain, showing promise for treating disorders related to the central nervous system.


Assuntos
Encéfalo , Ginsenosídeos , Mucosa Nasal , Polietilenoglicóis , Ácidos Esteáricos , Administração Intranasal , 2-Hidroxipropil-beta-Ciclodextrina , Encéfalo/metabolismo , Mucosa Nasal/metabolismo , Sistemas de Liberação de Medicamentos/métodos
18.
J Control Release ; 366: 746-760, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237688

RESUMO

Faced with the threat of lung cancer-related deaths worldwide, small interfering RNA (siRNA) can silence tumor related messenger RNA (mRNA) to tackle the issue of drug resistance with enhanced anti-tumor effects. However, how to increase lung tumor targeting and penetration with enhanced gene silencing are the issues to be addressed. Thus, the objective of this study is to explore the feasibility of designing non-viral siRNA vectors for enhanced lung tumor therapy via inhalation. Here, shell-core based polymer-lipid hybrid nanoparticles (HNPs) were prepared via microfluidics by coating PLGA on siRNA-loaded cationic liposomes (Lipoplexes). Transmission electron microscopy and energy dispersive spectroscopy study demonstrated that HNP consists of a PLGA shell and a lipid core. Atomic force microscopy study indicated that the rigidity of HNPs could be well tuned by changing thickness of the PLGA shell. The designed HNPs were muco-inert with increased stability in mucus and BALF, good safety, enhanced mucus penetration and cellular uptake. Crucially, HNP1 with the thinnest PLGA shell exhibited superior transfection efficiency (84.83%) in A549 cells, which was comparable to that of lipoplexes and Lipofectamine 2000, and its tumor permeability was 1.88 times that of lipoplexes in A549-3T3 tumor spheroids. After internalization of the HNPs, not only endosomal escape but also lysosomal exocytosis was observed. The transfection efficiency of HNP1 (39.33%) was 2.26 times that of lipoplexes in A549-3T3 tumor spheroids. Moreover, HNPs exhibited excellent stability during nebulization via soft mist inhaler. In conclusion, our study reveals the great potential of HNP1 in siRNA delivery for lung cancer therapy via inhalation.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , RNA Interferente Pequeno , Lipossomos , Transfecção , Células A549
19.
ACS Nano ; 18(20): 13361-13376, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728619

RESUMO

Oxygen therapy cannot rescue local lung hypoxia in patients with severe respiratory failure. Here, an inhalable platform is reported for overcoming the aberrant hypoxia-induced immune changes and alveolar damage using camouflaged poly(lactic-co-glycolic) acid (PLGA) microparticles with macrophage apoptotic body membrane (cMAB). cMABs are preloaded with mitochondria-targeting superoxide dismutase/catalase nanocomplexes (NCs) and modified with pathology-responsive macrophage growth factor colony-stimulating factor (CSF) chains, which form a core-shell platform called C-cMAB/NC with efficient deposition in deeper alveoli and high affinity to alveolar epithelial cells (AECs) after CSF chains are cleaved by matrix metalloproteinase 9. Therefore, NCs can be effectively transported into mitochondria to inhibit inflammasome-mediated AECs damage in mouse models of hypoxic acute lung injury. Additionally, the at-site CSF release is sufficient to rescue circulating monocytes and macrophages and alter their phenotypes, maximizing synergetic effects of NCs on creating a pro-regenerative microenvironment that enables resolution of lung injury and inflammation. This inhalable platform may have applications to numerous inflammatory lung diseases.


Assuntos
Macrófagos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Camundongos , Macrófagos/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Camundongos Endogâmicos C57BL , Hipóxia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar/patologia , Lesão Pulmonar/terapia , Administração por Inalação , Apoptose/efeitos dos fármacos
20.
Expert Opin Drug Deliv ; 20(10): 1333-1347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37439101

RESUMO

INTRODUCTION: Biomacromolecules have proven to be an attractive choice for treating diseases due to their properties of strong specificity, high efficiency, and low toxicity. Besides greatly improving the patient's complaint, oral delivery of macromolecules also complies with hormone physiological secretion, which has become one of the most innovative fields of research in recent years. AREAS COVERED: Oral delivery biological barriers for biomacromolecule, transport mechanisms, and various administration strategies were discussed in this review, including absorption enhancers, targeting nanoparticles, mucoadhesion nanoparticles, mucus penetration nanoparticles, and intelligent bionic drug delivery systems. EXPERT OPINION: The oral delivery of biomacromolecules has important clinical implications; however, these are still facing the challenges of low bioavailability due to certain barriers. Various promising technologies have been developed to overcome the barriers and improve the therapeutic effect of oral biomacromolecules. By considering safety and efficacy comprehensively, the development of intelligent nanoparticles based on the GIT environment has demonstrated some promise in overcoming these barriers; however, a more comprehensive understanding of the oral fate of oral biomacromolecules is still required.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Humanos , Administração Oral , Disponibilidade Biológica , Trato Gastrointestinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA