Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718570

RESUMO

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Assuntos
Apigenina , Transição Epitelial-Mesenquimal , Glucose , Histonas , Epitélio Pigmentado da Retina , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Animais , Apigenina/farmacologia , Acetilação/efeitos dos fármacos , Humanos , Glucose/metabolismo , Glucose/toxicidade , Histonas/metabolismo , Linhagem Celular , Camundongos , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/tratamento farmacológico , Proteína p300 Associada a E1A/metabolismo , Masculino , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/genética
2.
Chemistry ; 30(40): e202400537, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38703390

RESUMO

With the popularization of 5G technology and artificial intelligence, thermally conductive epoxies with self-healing ability will be widely used in flexible electronic materials. Although many compounds containing both performances have been synthesized, there is little systematic theory to explain the coordination mechanism. In this paper, alkyl chains of different lengths were introduced to epoxies to discuss the thermally conductive, the self-healing performance, and the synergistic effect. A series of electronic-grade biphenyl epoxies (4,4'-bis(oxiran-2-ylmethoxy)-1,1'-biphenyl (1), 4,4'-bis(2-(oxiran-2-yl)ethoxy)-1,1'-biphenyl (2), 4,4'-bis(3-(oxiran-2-yl)propoxy)-1,1'-biphenyl (3), and 4,4'-bis(4-(oxiran-2-yl)butoxy)-1,1'-biphenyl (4) were synthesized and characterized. Furthermore, they were cured with decanedioic acid to produce polymers. Results showed that alkyl chains can both affect the two properties, and the epoxies suitable for specific application scenarios can be prepared by adjusting the length of alkyl chains. In terms of thermal conductivity, compound 1 was a most promising material. However, compound 4 was expected to be utilized in flexible electronic devices because of its acceptable thermal conductivity, self-healing ability, transparency, and flexibility.

3.
Pestic Biochem Physiol ; 201: 105874, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685243

RESUMO

In insects, chemosensory proteins (CSPs) play an important role in the perception of the external environment and have been widely used for protein-binding characterization. Riptortus pedestris has received increased attention as a potential cause of soybean staygreen syndrome in recent years. In this study, we found that RpedCSP4 expression in the antennae of adult R. pedestris increased with age, with no significant difference in expression level observed between males and females, as determined through quantitative real-time polymerase chain reaction (qRT-PCR). Subsequently, we investigated the ability of RpedCSP4 to bind various ligands (five aggregated pheromone components and 13 soybean volatiles) using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP4 binds to three aggregated pheromone components of R. pedestris, namely, ((E)-2-hexenyl (Z)-3-hexenoate (E2Z3), (E)-2-hexenyl (E)-2-hexenoate (E2E2), and (E)-2-hexenyl hexenoate (E2HH)), and that its binding capacities are most stable under acidic condition. Finally, the structure and protein-ligand interactions of RpedCSP4 were further analyzed via homology modeling, molecular docking, and targeted mutagenesis experiments. The L29A mutant exhibited a loss of binding ability to these three aggregated pheromone components. Our results show that the olfactory function of RpedCSP4 provides new insights into the binding mechanism of RpedCSPs to aggregation pheromones and contributes to discover new target candidates that will provide a theoretical basis for future population control of R. pedestris.


Assuntos
Proteínas de Insetos , Feromônios , Animais , Feromônios/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/química , Masculino , Feminino , Ligação Proteica , Heterópteros/metabolismo , Heterópteros/genética
4.
Angew Chem Int Ed Engl ; 63(8): e202317631, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38126932

RESUMO

Organic ultra-long room-temperature phosphorescence (RTP) materials in the amorphous state have attracted widespread attention due to their simple preparation and flexibility to adopt various forms in sensors, bioimaging, and encryption applications. However, the amorphous molecular host for the host-guest RTP systems is highly demanded but limited. Here, a universal molecular host (DPOBP-Br) has been designed by integration of an amorphous moiety of diphenylphosphine oxide (DPO) and an intersystem crossing (ISC) group of 4-bromo-benzophenone (BP-Br). Various commercial fluorescence dyes were doped into the tight and transparent DPOBP-Br film, respectively, resulting in amorphous host-guest systems with ultra-long RTP colors from green to red. It was found that DPOBP-Br acted as a universal "triplet exciton pump" for promoting the generation of triplet excitons in the guest, through energy transfer processes and external heavy-atom effect based on DPOBP-Br. Interestingly, dynamic RTP was achieved by controlling residual oxygen concentration in the amorphous matrix by UV irradiation. Therefore, multi-dimensional anti-counterfeiting coatings were realized even on curved surfaces, simultaneously exhibiting spatial and 2D-time dependence. This work provides a strategy to design new amorphous molecular hosts for RTP systems and demonstrates the advanced information encryption with tempo-spatial resolution based on the dynamic ultra-long RTP of an amorphous system.

5.
J Am Chem Soc ; 145(30): 16748-16759, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37475090

RESUMO

Understanding the changes of molecular conformations is crucial for realizing multiple emissive triplet states in room-temperature phosphorescence (RTP) materials. In this work, we report two molecules, 4,4'-dimethylbenzil (DMBZ) and 4,4'-di-tert-butylbenzil (DBBZ) with conformation-dependent luminescence, and demonstrate that stimulus-responsive and wide-tuning RTP emissions can be realized via synergetic conformational regulations in ground and excited states. Due to conformational changes, DMBZ and DBBZ show abundant RTP variations upon external stimuli, including light, force, heat, and fumigation. Notably, DBBZ exhibits multiple conformational changes in both ground and excited states, which endow DBBZ with multiple emissive states and unique stimulus-responsive behaviors. DBBZ presents multiple phase transitions between the supercooled liquid state and different solid states accompanied by different phosphorescence transitions, in which the excited-state conformations are effectively regulated. Moreover, wide-range RTP regulations (between cyan, green, and yellow) are realized in both single component and host-guest systems of DBBZ, showing potential applications in temperature sensing, multicolor dynamic displays, and information encryption. These results may provide new visions for understanding the complicated conformational changes in the aggregated state, as well as unique insights into the relationship between molecular conformations, RTP emissions, and stimulus responsiveness.

6.
Biochem Biophys Res Commun ; 674: 10-18, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37393639

RESUMO

Ferroptosis is a type of nonapoptotic necrotic cell death characterized by iron-dependent lipid peroxidation. Saikosaponin A (SsA), a natural bioactive triterpenoid saponin extracted from Radix Bupleuri, has shown potent antitumor activity against various tumors. However, the underlying mechanism of the antitumor activity of SsA remains unclear. Here, we discovered that SsA induced HCC cell ferroptosis in vitro and in vivo. Using RNA-sequence analysis, we found that SsA mainly affected the glutathione metabolic pathway and inhibited the expression of cystine transporter solute carrier family 7 member 11 (SLC7A11). Indeed, SsA increased intracellular malondialdehyde (MDA) and iron accumulation, while it decreased the levels of reduced glutathione (GSH) in HCC. Deferoxamine (DFO), ferrostatin-1 (Fer-1) and GSH could rescue SsA-induced cell death, whereas Z-VAD-FMK was found ineffective in inhibiting SsA-induced cell death in HCC. Importantly, our result indicated that SsA induced the expression of activation transcription factor 3 (ATF3). SsA-induced cell ferroptosis and suppression of SLC7A11 are dependent on ATF3 in HCC. Moreover, we revealed that SsA induced ATF3 upregulation via activation of endoplasmic reticulum (ER) stress. Taken together, our findings support that ATF3-dependent cell ferroptosis mediated the antitumor effects of SsA, opening the possibility to explore SsA as a ferroptosis inducer in HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Fator 3 de Transcrição , Neoplasias Hepáticas/tratamento farmacológico , Estresse do Retículo Endoplasmático , Glutationa , Ferro , Fator 3 Ativador da Transcrição/genética
7.
Mol Reprod Dev ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963204

RESUMO

Controlling ovarian hyperstimulation syndrome (OHSS) in the controlled ovarian hyperstimulation treatment is necessary to increase the implantation success rate. This study aimed to explore the effect of naringin on the endometrial receptivity of OHSS rats. Female rats were randomly assigned to six groups: Blank, model, low-dose naringin (100 mg/kg/day), medium-dose naringin (200 mg/kg/day), high-dose naringin (400 mg/kg/day), and positive (0.18 mg/kg/day estradiol valerate) groups. Except for the blank group, rats established the OHSS model on Day 7, and their treatments were from Day 0 to 14, separately. Hematoxylin and eosin, immunohistochemical, and scanning electron microscopy were performed to detect the naringin effects on the endometrial receptivity of the OHSS model. Next, circRNAs transcriptome analysis was performed to screen circRNAs. Western blot analysis and real-time quantitative PCR were used to verify it. Our study showed that naringin treatments increased embryo number, endometrial thickness, pinopodes number, and Ki67 expression in the OHSS rats. Moreover, the result of circRNAs transcriptome sequencing showed that naringin significantly inhibited the rnocirc_008140 expression in the OHSS rats and significantly inhibited the changes of 28 gene ontology terms and three Kyoto Encyclopedia of Genes and Genomes pathways which were induced by OHSS. Abcc4 and Rps6ka5 genes were the enriched genes of those pathways. Finally, 24 miRNA target genes of rnocirc_008140 were predicted. Our study showed that naringin significantly improved the endometrial receptivity of OHSS rats to increase the embryo implantation success by reducing rnocirc_008140-adsorbed miRNAs to regulate Abcc4 and Rps6ka5 expression.

8.
Pestic Biochem Physiol ; 191: 105348, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963930

RESUMO

A precise chemosensory system can help insects complete various important behavioral responses by accurately identifying different external odorants. Therefore, deeply understanding the mechanism of insect recognition of important odorants will help us develop efficient and environmentally-friendly behavioral inhibitors. Spodoptera frugiperda is a polyphagous pest that feeds on >350 different host plants worldwide and also harms maize production in China. However, the molecular mechanism of the first step for males to use odorant-binding proteins (OBPs) to recognize sex pheromones remains unclear. Here, we obtained 50 OBPs from the S. frugiperda genome, and the expression level of SfruGOBP1 in females was significantly higher than that in males, whereas SfruGOBP2 displayed male-biased expression. Fluorescence competitive binding assays showed that only SfruGOBP2 showed binding affinities for the four sex pheromones of female S. frugiperda. Subsequently, we identified some key amino acid residues that can participate in the interaction between SfruGOBP2 and sex pheromones using molecular docking and site-directed mutagenesis methods. These findings will help us explore the interaction mechanism between GOBPs and sex pheromones in moths, and provide important target genes for developing new mating inhibitors of S. frugiperda in the future.


Assuntos
Mariposas , Atrativos Sexuais , Animais , Feminino , Masculino , Atrativos Sexuais/metabolismo , Spodoptera/genética , Spodoptera/metabolismo , Odorantes , Simulação de Acoplamento Molecular , Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Feromônios/metabolismo
9.
Pestic Biochem Physiol ; 192: 105394, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105632

RESUMO

Callosobruchus chinensis (Coleoptera: Fabaceae) is a worldwide pest that feeds exclusively on legumes, and is the most serious pest affecting mung beans. Usually, the insect olfactory system plays a predominant role in searching for host plants and egg-laying locations. Chemosensory proteins (CSPs), are mainly responsible for transporting specific odour molecules from the environment. In this study, we found that the CSP1 gene of adult C. chinensis displayed antennae-biased expression using quantitative real-time PCR (qRT-PCR) analysis. The binding properties of 23 mung bean volatiles were then determined through several analyses of in vitro recombinant CSP1 protein, including fluorescence competitive binding assay, homology modelling, molecular docking, and site-directed mutagenesis. Fluorescence competitive binding assays showed that CchiCSP1 protein could bind to four mung bean volatiles and was most stable at pH 7.4. After site-directed mutation of three key amino acid bases (L39, V25, and Y35), their binding affinities to each ligand were significantly decreased or lost. This indicated that these three amino acid residues may be involved in the binding of CchiCSP1 to different ligands. We further used Y-tube behavioural bioassays to find that the four mung bean volatiles had a significant attraction or repulsion response in adult C. chinensis. The above findings confirm that the CchiCSP1 protein may be involved in the response of C. chinensis to mung bean volatiles and plays an important role in olfactory-related behaviours. The four active volatiles are expected to develop into new behavioural attractants or repellents in the future.


Assuntos
Besouros , Fabaceae , Vigna , Animais , Simulação de Acoplamento Molecular , Ligantes
10.
Pestic Biochem Physiol ; 194: 105513, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532328

RESUMO

Riptortus pedestris (bean bug), a common soybean pest, has a highly developed olfactory system to find hosts for feeding and oviposition. Chemosensory proteins (CSPs) have been identified in many insect species; however, their functions in R. pedestris remain unknown. In this study, quantitative real time-polymerase chain reaction (qRT-PCR) revealed that the expression of RpedCSP12 in the adult antennae of R. pedestris increased with age. Moreover, a significant difference in the expression levels of RpedCSP12 was observed between male and female antennae at one and three days of age. We also investigated the binding ability of RpedCSP12 to different ligands using a prokaryotic expression system and fluorescence competitive binding assays. We found that RpedCSP12 only bound to one aggregation pheromone, (E)-2-hexenyl (Z)-3-hexenoate, and its binding decreased with increasing pH. Furthermore, homology modelling, molecular docking, and site-directed mutagenesis revealed that the Y27A, L74A, and L85A mutants lost their binding ability to (E)-2-hexenyl (Z)-3-hexenoate. Our findings highlight the olfactory roles of RpedCSP12, providing insights into the mechanism by which RpedCSPs bind to aggregation pheromones. Therefore, our study can be used as a theoretical basis for the population control of R. pedestris in the future.


Assuntos
Heterópteros , Feromônios , Animais , Feminino , Simulação de Acoplamento Molecular , Heterópteros/genética , Glycine max
11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(4): 655-665, 2023 Aug.
Artigo em Zh | MEDLINE | ID: mdl-37654146

RESUMO

Objective By review of the studies comparing the measurements properties of EuroQol five-dimensional questionnaire (EQ-5D) and short-form 6-dimension health survey (SF-6D) in Chinese populations,this study aims to provide a reference for selecting,applying,and improving the health-related quality of life and health utility measurement tools for Chinese populations.Methods We retrieved the original studies which compared the two tools from both Chinese and English databases and then summarized the findings of the included studies from the measurement properties.Results A total of 12 studies were screened out,including 9 studies about diseased populations and 3 studies about the general populations.The included studies generally demonstrated that both EQ-5D and SF-6D had good feasibility,while the utility scores generated from them cannot be used interchangeably.For the diseased populations,both EQ-5D and SF-6D and their utility scores had good construct validity,including convergent and known-groups validity,while only the utility scores had good construct validity for the general populations.For the diseased populations,SF-6D had smaller ceiling effect and better sensitivity than EQ-5D-3L,while the comparison results between SF-6D and EQ-5D-5L were inconsistent.For the general populations,SF-6D also had better sensitivity than EQ-5D.In addition,there was little comparative evidence for reliability such as test-retest reliability and responsiveness between SF-6D and SF-6D in the two populations.Conclusion This review summarized the characteristics,methods,results,and conclusions of the studies that directly compared the two tools for the populations in China.Although only the studies directly comparing EQ-5D and SF-6D are included in this review,the common findings in these studies provide a basis for better comparison between the two in the future.

12.
Angew Chem Int Ed Engl ; 62(7): e202217284, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36512442

RESUMO

In this work, an efficient polymer-based organic afterglow system, which shows reversible photochromism, switchable ultralong organic phosphorescence (UOP), and prominent water and chemical resistance simultaneously, has been developed for the first time. By doping phenoxazine (PXZ) and 10-ethyl-10H-phenoxazine (PXZEt) into epoxy polymers, the resulting PXZ@EP-0.25 % and PXZEt@EP-0.25 % films show unique photoactivated UOP properties, with phosphorescence quantum yields and lifetimes up to 10.8 % and 845 ms, respectively. It is found that the steady-state luminescence and UOP of PXZ@EP-0.25 % are switchable by light irradiation and thermal annealing. Moreover, the doped films can still produce conspicuous UOP after soaking in water, strong acid and base, and organic solvents for more than two weeks, exhibiting outstanding water and chemical resistance. Inspired by these exciting results, the PXZ@EP-0.25 % has been successfully exploited as an erasable transparent film for light printing.

13.
Angew Chem Int Ed Engl ; 62(7): e202217616, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36537720

RESUMO

Color-tunable dual-mode organic afterglow excited by ultraviolet (UV) and white light was achieved from classical aggregation-caused quenching compounds for the first time. Specifically, two luminescent systems, which could produce significant organic afterglow composed of persistent thermally activated delayed fluorescence and ultralong organic phosphorescence under ambient conditions, were constructed by doping fluorescein sodium and calcein sodium into aluminum sulfate. Their lifetimes surpassed 600 ms, and the dopant concentrations were as low as 5×10-6  wt %. Moreover, the persistent luminescence colors of the materials could be tuned from blue to green and then to yellow by simply varying the concentrations of guest compounds or the temperature in the range of 260-340 K. Inspired by these exciting results, the afterglow materials were used for UV- and white-light-manipulated anti-counterfeiting and preparation of elastomers with different colors of persistent luminescence.

14.
Nat Mater ; 20(2): 175-180, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32958877

RESUMO

Commercial carbazole has been widely used to synthesize organic functional materials that have led to recent breakthroughs in ultralong organic phosphorescence1, thermally activated delayed fluorescence2,3, organic luminescent radicals4 and organic semiconductor lasers5. However, the impact of low-concentration isomeric impurities present within commercial batches on the properties of the synthesized molecules requires further analysis. Here, we have synthesized highly pure carbazole and observed that its fluorescence is blueshifted by 54 nm with respect to commercial samples and its room-temperature ultralong phosphorescence almost disappears6. We discover that such differences are due to the presence of a carbazole isomeric impurity in commercial carbazole sources, with concentrations <0.5 mol%. Ten representative carbazole derivatives synthesized from the highly pure carbazole failed to show the ultralong phosphorescence reported in the literature1,7-15. However, the phosphorescence was recovered by adding 0.1 mol% isomers, which act as charge traps. Investigating the role of the isomers may therefore provide alternative insights into the mechanisms behind ultralong organic phosphorescence1,6-18.


Assuntos
Carbazóis/química , Carbazóis/síntese química , Temperatura
15.
Insect Mol Biol ; 31(6): 760-771, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35833827

RESUMO

The bean bug Riptortus pedestris is a notorious insect pest that can damage various crops, especially soybean, in East Asia. In insects, the olfactory system plays a crucial role in host finding and feeding behaviour in which the odorant-binding proteins (OBPs) are believed to be involved in initial step in this system. In this study, we produced the R. pedestris adult antennae-expressed RpedOBP4 protein using a recombinant expression system in E. coli. Fluorescence competitive binding confirmed that RpedOBP4 has binding affinities to 7 of 20 soybean volatiles (ligands), and that a neutral condition is the best environment for it. The binding property of RpedOBP4 to these ligands was further revealed by integrating data from molecular docking, site-directed mutagenesis and ligand binding assays. This demonstrated that five amino acid residues (I30, L33, Y47, I57 and Y121) are involved in the binding process of RpedOBP4 to corresponding ligands. These findings will not only help us to more thoroughly explore the olfactory mechanism of R. pedestris during feeding on soybean, but also lead to the identification of key candidate targets for developing environmental and efficient behaviour inhibitors to prevent population expansion of R. pedestris in the future.


Assuntos
Heterópteros , Receptores Odorantes , Animais , Glycine max/metabolismo , Simulação de Acoplamento Molecular , Escherichia coli , Heterópteros/metabolismo , Receptores Odorantes/metabolismo , Ligantes , Proteínas de Insetos/metabolismo , Ligação Proteica
16.
BMC Microbiol ; 21(1): 296, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715778

RESUMO

BACKGROUND: Ganoderma (Lingzhi in Chinese) has shown good clinical outcomes in the treatment of insomnia, restlessness, and palpitation. However, the mechanism by which Ganoderma ameliorates insomnia is unclear. We explored the mechanism of the anti-insomnia effect of Ganoderma using systems pharmacology from the perspective of central-peripheral multi-level interaction network analysis. METHODS: The active components and central active components of Ganoderma were obtained from the TCMIP and TCMSP databases, then screened to determine their pharmacokinetic properties. The potential target genes of these components were identified using the Swiss Target Prediction and TCMSP databases. The results were matched with the insomnia target genes obtained from the GeneCards, OMIM, DisGeNET, and TCMIP databases. Overlapping targets were subjected to multi-level interaction network analysis and enrichment analysis using the STRING, Metascape, and BioGPS databases. The networks analysed were protein-protein interaction (PPI), drug-component-target gene, component-target gene-organ, and target gene-extended disease; we also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS: In total, 34 sedative-hypnotic components (including 5 central active components) were identified, corresponding to 51 target genes. Multi-level interaction network analysis and enrichment analysis demonstrated that Ganoderma exerted an anti-insomnia effect via multiple central-peripheral mechanisms simultaneously, mainly by regulating cell apoptosis/survival and cytokine expression through core target genes such as TNF, CASP3, JUN, and HSP90αA1; it also affected immune regulation and apoptosis. Therefore, Ganoderma has potential as an adjuvant therapy for insomnia-related complications. CONCLUSION: Ganoderma exerts an anti-insomnia effect via complex central-peripheral multi-level interaction networks.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Ganoderma/química , Distúrbios do Início e da Manutenção do Sono , Bases de Dados Genéticas , Bases de Dados de Produtos Farmacêuticos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Redes Reguladoras de Genes/efeitos dos fármacos , Hipnóticos e Sedativos/química , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Farmacologia em Rede , Mapas de Interação de Proteínas/efeitos dos fármacos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/metabolismo
17.
Gen Physiol Biophys ; 40(5): 351-363, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34602449

RESUMO

Successful implantation requires endometrial receptivity. To investigate the mechanisms of miR-494-3p on endometrial receptivity, GnRHa's superovulation scheme was designed to reduce endometrial receptivity, and the pregnant mice were injected with miR-494-3p antagomir. The regulatory role of miR-494-3p was identified by RT-qPCR, uterine blastocyst count, scanning electron microscopy, hematoxylin-eosin (HE) staining, and Western blot. Results indicated that miR-494-3p antagomir increased uterine blastocysts numbers, promoted the pinocytosis expressions, and increased endometrial thickness. Besides, miR-494-3p antagomir significantly increased leukemia inhibitory factor (LIF), Ang-2 and VEGF protein expressions, and up-regulated p-AKT/AKT and p-mTOR/mTOR protein ratios in endometrium. Luciferase assay confirmed that LIF was a potential target of miR-494-3p. Subsequently, human endometrial epithelial cells (hEECs) were transfected with miR-494-3p inhibitor and PI3K inhibitor (LY294002). The role of miR-494-3p was identified by RT-qPCR, CCK-8 assay, transwell assay and flow cytometry. Results indicated that miR-494-3p inhibitor significantly increased proliferation and invasion, and significantly inhibited apoptosis in hEECs, while LY294002 reversed its biological function. Overall, these results suggested that miR-494-3p is the key regulator of endometrial receptivity in mice, regulating this complex process through the PI3K/AKT/mTOR pathway. Understanding the role of miR-494-3p in endometrial receptivity is of great significance for exploring new targets for the diagnosis and treatment of early pregnancy failure, and improving the success rates of artificial reproduction.


Assuntos
MicroRNAs/genética , Fosfatidilinositol 3-Quinases , Animais , Endométrio , Feminino , Camundongos , Gravidez , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR
18.
Molecules ; 25(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316530

RESUMO

TiO2 nanotube arrays (TNAs) with tube lengths of 4, 6, and 7 µm were prepared via two-step anodization. Thereafter, ultraviolet (UV) photodetectors (PDs) with Au/TiO2/Au structures were prepared using these TNAs with different tube lengths. The effects of TNA length and device area on the performance of the device were investigated using in situ Raman spectroscopy. The maximum laser/dark current ratio was achieved by using a TNA with a size of 1 × 1 cm2 and a length of 7 µm, under a 532 nm laser. In addition, when the device was irradiated with a higher energy laser (325 nm), the UV Raman spectrum was found to be more sensitive than the visible Raman spectrum. At 325 nm, the laser/dark current ratio was nearly 24 times higher than that under a 532 nm laser. Six phonon modes of anatase TNAs were observed, at 144, 199, 395, 514, and 635 cm-1, which were assigned to the Eg(1), Eg(2), B1g(1), A1g/B1g(2), and Eg(3) modes, respectively. The strong low-frequency band at 144 cm-1 was caused by the O-Ti-O bending vibration and is a characteristic band of anatase. The results show that the performance of TNA-based PDs is length-dependent. Surface-enhanced Raman scattering signals of 4-mercaptobenzoic acid (4-MBA) molecules were also observed on the TNA surface. This result indicates that the length-dependent performance may be derived from an increase in the specific surface area of the TNA. In addition, the strong absorption of UV light by the TNAs caused a blueshift of the Eg(1) mode.


Assuntos
Nanotubos , Espectrofotometria , Análise Espectral Raman , Titânio , Raios Ultravioleta , Nanotubos/química , Nanotubos/ultraestrutura , Titânio/química , Difração de Raios X
19.
Molecules ; 25(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155919

RESUMO

Quantitative analysis of formaldehyde (HCHO, FA), especially at low levels, in various environmental media is of great importance for assessing related environmental and human health risks. A highly efficient and convenient FA detection method based on surface-enhanced Raman spectroscopy (SERS) technology has been developed. This SERS-based method employs a reusable and soft silver-coated TiO2 nanotube array (TNA) material, such as an SERS substrate, which can be used as both a sensing platform and a degradation platform. The Ag-coated TNA exhibits superior detection sensitivity with high reproducibility and stability compared with other SERS substrates. The detection of FA is achieved using the well-known redox reaction of FA with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (AHMT) at room temperature. The limit of detection (LOD) for FA is 1.21 × 10-7 M. In addition, the stable catalytic performance of the array allows the degradation and cleaning of the AHMT-FA products adsorbed on the array surface under ultraviolet irradiation, making this material recyclable. This SERS platform displays a real-time monitoring platform that combines the detection and degradation of FA.


Assuntos
Técnicas Biossensoriais , Formaldeído/análise , Nanotubos/química , Prata/química , Análise Espectral Raman , Titânio/química , Estrutura Molecular , Nanotubos/ultraestrutura , Análise Espectral , Análise Espectral Raman/métodos
20.
Angew Chem Int Ed Engl ; 59(50): 22645-22651, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32790127

RESUMO

Mechanoluminescence (ML) materials are attracting increasing interest owing to promising applications in various areas. However, to date, it remains a major challenge to develop a precise and universal route to achieving organic ML materials. Herein, we show that ML can be easily realized in organic piezophotonic host-guest crystals, under conditions in which neither the host nor the guest is ML-active. The experimental and theoretical results reveal that excitons of the host generated by piezoelectricity can be harvested effectively by the guest for light emission, owing to the restraint of intersystem crossing process. Moreover, different host-guest crystals are constructed, wherein the emission color, intensity, color purity, and emission duration of ML can be manipulated. This work deepens our understanding of organic ML generation in piezophotonic host-guest crystals and provides an inspiring principle to design more organic ML materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA