Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718570

RESUMO

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Assuntos
Apigenina , Transição Epitelial-Mesenquimal , Glucose , Histonas , Epitélio Pigmentado da Retina , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Animais , Apigenina/farmacologia , Acetilação/efeitos dos fármacos , Humanos , Glucose/metabolismo , Glucose/toxicidade , Histonas/metabolismo , Linhagem Celular , Camundongos , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/tratamento farmacológico , Proteína p300 Associada a E1A/metabolismo , Masculino , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/genética
2.
Compr Rev Food Sci Food Saf ; 23(4): e13398, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38925595

RESUMO

Food science encounters increasing complexity and challenges, necessitating more efficient, accurate, and sensitive analytical techniques. Mass spectrometry imaging (MSI) emerges as a revolutionary tool, offering more molecular-level insights. This review delves into MSI's applications and challenges in food science. It introduces MSI principles and instruments such as matrix-assisted laser desorption/ionization, desorption electrospray ionization, secondary ion mass spectrometry, and laser ablation inductively coupled plasma mass spectrometry, highlighting their application in chemical composition analysis, variety identification, authenticity assessment, endogenous substance, exogenous contaminant and residue analysis, quality control, and process monitoring in food processing and food storage. Despite its potential, MSI faces hurdles such as the complexity and cost of instrumentation, complexity in sample preparation, limited analytical capabilities, and lack of standardization of MSI for food samples. While MSI has a wide range of applications in food analysis and can provide more comprehensive and accurate analytical results, challenges persist, demanding further research and solutions. The future development directions include miniaturization of imaging devices, high-resolution and high-speed MSI, multiomics and multimodal data fusion, as well as the application of data analysis and artificial intelligence. These findings and conclusions provide valuable references and insights for the field of food science and offer theoretical and methodological support for further research and practice in food science.


Assuntos
Análise de Alimentos , Tecnologia de Alimentos , Espectrometria de Massas , Tecnologia de Alimentos/métodos , Espectrometria de Massas/métodos , Análise de Alimentos/métodos
3.
Biochem Biophys Res Commun ; 674: 10-18, 2023 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-37393639

RESUMO

Ferroptosis is a type of nonapoptotic necrotic cell death characterized by iron-dependent lipid peroxidation. Saikosaponin A (SsA), a natural bioactive triterpenoid saponin extracted from Radix Bupleuri, has shown potent antitumor activity against various tumors. However, the underlying mechanism of the antitumor activity of SsA remains unclear. Here, we discovered that SsA induced HCC cell ferroptosis in vitro and in vivo. Using RNA-sequence analysis, we found that SsA mainly affected the glutathione metabolic pathway and inhibited the expression of cystine transporter solute carrier family 7 member 11 (SLC7A11). Indeed, SsA increased intracellular malondialdehyde (MDA) and iron accumulation, while it decreased the levels of reduced glutathione (GSH) in HCC. Deferoxamine (DFO), ferrostatin-1 (Fer-1) and GSH could rescue SsA-induced cell death, whereas Z-VAD-FMK was found ineffective in inhibiting SsA-induced cell death in HCC. Importantly, our result indicated that SsA induced the expression of activation transcription factor 3 (ATF3). SsA-induced cell ferroptosis and suppression of SLC7A11 are dependent on ATF3 in HCC. Moreover, we revealed that SsA induced ATF3 upregulation via activation of endoplasmic reticulum (ER) stress. Taken together, our findings support that ATF3-dependent cell ferroptosis mediated the antitumor effects of SsA, opening the possibility to explore SsA as a ferroptosis inducer in HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Fator 3 de Transcrição , Neoplasias Hepáticas/tratamento farmacológico , Estresse do Retículo Endoplasmático , Glutationa , Ferro , Fator 3 Ativador da Transcrição/genética
4.
Pharm Biol ; 60(1): 579-588, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35244516

RESUMO

CONTEXT: Yunpi Heluo (YPHL) decoction is a Chinese herbal formula with particular advantages for treating type 2 diabetes. Yet, its exact mechanism of action is not fully understood. OBJECTIVE: To examine the therapeutic effect of YPHL on ectopic lipid deposition (EDL) in Zucker diabetic fatty (ZDF) rats and the underlying mechanism. MATERIALS AND METHODS: The ZDF Rats were randomized into five groups, including model, YPHL (200 mg/kg/d for 10 weeks), SIRT1-overexpression (injected with HBAAV2/9-r-SIRT1-3'-flag-GFP), NC (injected with HBAAV2/9-CMV-GFP as blank control) and control group. Pancreatic ß-cells obtained from high-lipid-high-glucose fed rats were treated with YPHL (10 mg/mL) for 48 h. Lipid deposition and autophagosomes were analyzed by transmission electron microscopy. Intracellular H2O2 and ROS concentrations were measured by flow cytometry. SIRT1, FOXO1, LC3 and P62 mRNA and protein levels were analyzed using qRT-PCR and Western blots. RESULTS: Compared with the model group, blood glucose levels in YPHL and si-SIRT1 groups were reduced by 19.3% and 27.9%, respectively. In high-lipid-high-glucose cells treated with YPHL, lipid droplets were reduced and decrease in apoptosis rate (38.6%), H2O2 (31.2%) and ROS (44.5%) levels were observed. After YPHL intervention or SIRT1 overexpression, LC3 and p62 expression increased. Protein expression of SIRT1 and LC3 in model, si-SIRT1, si-NC and si-SIRT1 + YPHL groups was lower than those in control group, while FoxO1 expression was increased. All of these protein level alterations were reversed in the si-NC + YPHL group. DISCUSSION AND CONCLUSIONS: YPHL reduced EDL by regulating the SIRT1-FoxO1 autophagy pathway in diabetic rats, which could lead to future perspectives for the treatment of diabetes.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Glicemia/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Masculino , Proteínas do Tecido Nervoso/metabolismo , Distribuição Aleatória , Ratos , Ratos Zucker , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo
5.
BMC Microbiol ; 21(1): 296, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715778

RESUMO

BACKGROUND: Ganoderma (Lingzhi in Chinese) has shown good clinical outcomes in the treatment of insomnia, restlessness, and palpitation. However, the mechanism by which Ganoderma ameliorates insomnia is unclear. We explored the mechanism of the anti-insomnia effect of Ganoderma using systems pharmacology from the perspective of central-peripheral multi-level interaction network analysis. METHODS: The active components and central active components of Ganoderma were obtained from the TCMIP and TCMSP databases, then screened to determine their pharmacokinetic properties. The potential target genes of these components were identified using the Swiss Target Prediction and TCMSP databases. The results were matched with the insomnia target genes obtained from the GeneCards, OMIM, DisGeNET, and TCMIP databases. Overlapping targets were subjected to multi-level interaction network analysis and enrichment analysis using the STRING, Metascape, and BioGPS databases. The networks analysed were protein-protein interaction (PPI), drug-component-target gene, component-target gene-organ, and target gene-extended disease; we also performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS: In total, 34 sedative-hypnotic components (including 5 central active components) were identified, corresponding to 51 target genes. Multi-level interaction network analysis and enrichment analysis demonstrated that Ganoderma exerted an anti-insomnia effect via multiple central-peripheral mechanisms simultaneously, mainly by regulating cell apoptosis/survival and cytokine expression through core target genes such as TNF, CASP3, JUN, and HSP90αA1; it also affected immune regulation and apoptosis. Therefore, Ganoderma has potential as an adjuvant therapy for insomnia-related complications. CONCLUSION: Ganoderma exerts an anti-insomnia effect via complex central-peripheral multi-level interaction networks.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Ganoderma/química , Distúrbios do Início e da Manutenção do Sono , Bases de Dados Genéticas , Bases de Dados de Produtos Farmacêuticos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Redes Reguladoras de Genes/efeitos dos fármacos , Hipnóticos e Sedativos/química , Hipnóticos e Sedativos/farmacologia , Hipnóticos e Sedativos/uso terapêutico , Farmacologia em Rede , Mapas de Interação de Proteínas/efeitos dos fármacos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/genética , Distúrbios do Início e da Manutenção do Sono/metabolismo
6.
Cancer Cell Int ; 21(1): 238, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33902610

RESUMO

BACKGROUND: Colon cancer is a malignant gastrointestinal tumour with high incidence, mortality and metastasis rates worldwide. Aloe-emodin is a monomer compound derived from hydroxyanthraquinone. Aloe-emodin produces a wide range of antitumour effects and is produced by rhubarb, aloe and other herbs. However, the mechanism by which aloe-emodin influences colon cancer is still unclear. We hope these findings will lead to the development of a new therapeutic strategy for the treatment of colon cancer in the clinic. METHODS: We identified the overlapping targets of aloe-emodin and colon cancer and performed protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. In addition, we selected apoptosis pathways for experimental verification with cell viability, cell proliferation, caspase-3 activity, DAPI staining, cell cycle and western blotting analyses to evaluate the apoptotic effect of aloe-emodin on colon cancer cells. RESULTS: The MTT assay and cell colony formation assay showed that aloe-emodin inhibited cell proliferation. DAPI staining confirmed that aloe-emodin induced apoptosis. Aloe-emodin upregulated the protein level of Bax and decreased the expression of Bcl-2, which activates caspase-3 and caspase-9. Furthermore, the protein expression level of cytochrome C increased in a time-dependent manner in the cytoplasm but decreased in a time-dependent manner in the mitochondria. CONCLUSION: These results indicate that aloe-emodin may induce the apoptosis of human colon cancer cells through mitochondria-related pathways.

7.
Regul Toxicol Pharmacol ; 92: 315-323, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29287802

RESUMO

Lamiophlomis rotata(Benth.) Kudo is widely used in traditional Chinese medicine and its iridoid glycosides extract (IGLR) was the main active ingredient with hemostatic, antinociceptive and anti-inflammatory effects. This study was aimed to evaluate the safety of IGLR using acute and sub-chronic toxicity study methods on Sprague-Dawley rats. In acute toxicity test, IGLR caused slight diarrhea in three dose groups and a decreased of RBC and increased of MCH and Ret (P < .05) were observed in 16 g/kg group. In sub-chronic toxicity study, unscheduled deaths occurred in 1 and 3 rats at 0.40 and 1.00 g/kg groups, respectively. A slight diarrhea was observed in 1.00 g/kg group. Hemolytic anemia was the main toxicity effects of IGLR found in 0.40 and 1.00 g/kg groups, with a significant decrease of RBC, HGB (P < .05) and increase of Ret, MCV, MCH (P < .05) in hematological parameters, a significant decrease of ALT, Crea (P < .05) and increase of TBIL (P < .05) in biochemical parameters, and a significant increase of the percentage of rubricyte, normoblast (P < .05) in bone marrow. Overall, this study found IGLR has a potential toxicity considering with hemolytic anemia and diarrhea to rat. These results provide an important reference for further IGLR-related drug exploration.


Assuntos
Glicosídeos Iridoides/efeitos adversos , Lamiaceae/efeitos adversos , Extratos Vegetais/efeitos adversos , Analgésicos/efeitos adversos , Anemia/induzido quimicamente , Animais , Anti-Inflamatórios/efeitos adversos , Diarreia/induzido quimicamente , Medicamentos de Ervas Chinesas/efeitos adversos , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade Aguda/métodos
8.
Phytother Res ; 32(7): 1354-1363, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29575361

RESUMO

Chronic osteomyelitis is primarily caused by infection with Staphylococcus aureus (S. aureus). Antibiotics are commonly administered; however, it is a challenge to promote bone healing. The aim of this study was to investigate the in vitro effects of alkaloids from the herbal remedy Sophora flavescens (ASF) on rat calvarial osteoblasts (ROBs) infected with S. aureus and healthy osteoclasts. Cell proliferation and alkaline phosphatase, interleukin-6, and tumour necrosis factor-α activity was measured in infected ROBs; tartrate-resistant acid phosphatase was evaluated in osteoclasts via enzyme-linked immunosorbent assay. The mRNA and protein expression levels of bone morphogenetic protein 2, runt-related transcription factor 2, osteoprotegerin, and receptor activator of nuclear factor kappa-B ligand were assessed in infected ROBs through reverse transcription-polymerase chain reaction and western blotting analysis, respectively. Results indicated that ASF increased the viability of uninfected ROBs and infected ROBs treated with vancomycin via regulation of bone morphogenetic protein 2, runt-related transcription factor, osteoprotegerin, and receptor activator of nuclear factor kappa-B ligand mRNA and protein expression levels. In addition, the secretion of the inflammatory factor tumour necrosis factor-α was decreased and alkaline phosphatase activity was increased, inhibiting the viability of osteoclasts and tartrate-resistant acid phosphatase activity. Therefore, the herbal remedy ASF has potential as a new treatment for chronic osteomyelitis.


Assuntos
Alcaloides/uso terapêutico , Medicina Tradicional Chinesa/métodos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteomielite/diagnóstico , Sophora/metabolismo , Staphylococcus aureus/química , Alcaloides/farmacologia , Animais , Osteomielite/patologia , Ratos
9.
Phytother Res ; 31(2): 330-339, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27896877

RESUMO

Flavonoids are the active component of the Herba Epimedii (H. Epimedii), which is commonly used in Asia. This study is to investigate the effect of H. Epimedii on bone repair after anti-infection treatment in vivo. The bioactive-composition group of H. Epimedii (BCGE) contained four flavonoids with the total content of 43.34%. Rabbits with chronic osteomyelitis in response to injection with Staphylococcus aureus were treated with BCGE of 242.70 mg/kg/day intragastrically after vancomycin-calcium sulphate treatment. Micro-computerd tomography (CT), morphology, blood biochemistry and osteocalcin levels were assessed for effect evaluation. In addition, the rat calvarial osteoblasts infected with S. aureus were treated with vancomycin and BCGE. Cell viability, alkaline phosphatase activity, bone morphogenetic protein 2, Runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor-κB ligand mRNA levels and protein expression were assessed. Our results indicated that BCGE promoted bone repair via increasing the bone mass, the volume of bone, promoting osteocalcin secretion after vancomycin-calcium sulfate treatment. BCGE enhanced the cell proliferation, by regulating bone morphogenetic protein 2, runt-related transcription factor 2, and osteoprotegerin/receptor activator of nuclear factor κ-B ligand mRNA and protein expression to maintain the balance between bone formation and bone resorption. Therefore, BCGE is a potential adjuvant herbal remedy for the post-infection treatment of chronic osteomyelitis. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Medicamentos de Ervas Chinesas/química , Flavonoides/farmacologia , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteomielite/tratamento farmacológico , Animais , Proliferação de Células , Doença Crônica , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Técnicas In Vitro , Coelhos , Ratos , Ratos Sprague-Dawley
10.
J Sep Sci ; 39(5): 818-26, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26681529

RESUMO

The monosaccharide compositions of functional polysaccharides are essential for structure elucidation and biological activity determination. A sensitive method based on on-line hollow-fiber liquid-phase microextraction with high-performance liquid chromatography has been established for the analysis of ten monosaccharide compositions (two uronic acids, two amino sugars and six neutral sugars) of the immunomodulatory polysaccharides. After derivatization, the sample was injected into the lumen of a hollow fiber immersed in butyl ether and separated by liquid chromatography. Under optimized conditions, the calibration curves were linear (r ≥ 0.9996) in the range of 10-2000 µmol L(-1) . The limits of detection were in the range of 0.04-1.58 µmol L(-1) , and the recoveries were in the range of 92.1-99.6%, which shows that the method is applicable to the analysis of the monosaccharide composition of various polysaccharides.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Monossacarídeos/química , Monossacarídeos/isolamento & purificação , Microextração em Fase Sólida/métodos , Concentração de Íons de Hidrogênio , Limite de Detecção , Microextração em Fase Sólida/instrumentação
11.
Tumour Biol ; 36(8): 5815-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25707355

RESUMO

The small GTPase Rab17 is a member of the Rab family and plays a critical role in the regulation of membrane trafficking polarized eukaryotic cells. However, the role of Rab17 in hepatocellular carcinoma (HCC) is not clear. In the present study, we investigated the role of Rab17 in HCC tumourgenesis. The expressions of Rab17 in non-tumour hepatic tissues and HCCs were detected via immunohistochemistry. Rab17 was found in 31 of 48 (64.6 %) and in 23 of 62 (37.1 %) of non-tumour hepatic tissue samples and HCCs (P = 0.0068), respectively, and there were significant correlations between Rab17 reductions and unfavourable variables including tumour size (P = 0.0171), differentiation level (P = 0.0126), and lymph nodal (P = 0.0044) and distant metastases (P = 0.0047). To elucidate the role of Rab17 in HCC, we generated two Rab17-overexpressing HCC cell lines. Rab17 overexpression significantly inhibited the tumourigenic properties of HCC cells in vitro and in vivo as demonstrated by reduced cell proliferation and migration, elevated G1 arrest, and decreased tumour xenograft growth. However, the attenuated tumourigenic properties of the HCC cells that were induced by Rab17 overexpression were significantly rescued by the activator of the Erk pathway EGF, which indicates that the Erk pathway plays a critical role in the Rab17 up-regulation-induced reduced tumourigenic properties of HCC cells. Rab17 might act as a tumour suppressor gene in HCCs, and the anti-tumour effects of Rab17 might be partially mediated by the Erk pathway.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Monoméricas de Ligação ao GTP/biossíntese , Idoso , Apoptose/genética , Carcinoma Hepatocelular/patologia , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Proteínas Monoméricas de Ligação ao GTP/genética
12.
Phytomedicine ; 128: 155477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489890

RESUMO

BACKGROUND: The alleviating effect of paeoniflorin (Pae) on liver fibrosis has been established; however, the molecular mechanism and specific target(s) underlying this effect remain elusive. PURPOSE: This study was to investigate the molecular mechanism underlying the regulatory effect of Pae on hepatic stellate cells (HSCs) activation in liver fibrosis, with a specific focus on the role of Pae in modulating histone methylation modifications. METHODS: The therapeutic effect of Pae was evaluated by establishing in vivo and in vitro models of carbon tetrachloride (CCl4)-induced mice and transforming growth factor ß1 (TGF-ß1)-induced LX-2 cells, respectively. Molecular docking, surface plasmon resonance (SPR), chromatin immunoprecipitation-quantitative real time PCR (ChIP-qPCR) and other molecular biological methods were used to clarify the molecular mechanism of Pae regulating HSCs activation. RESULTS: Our study found that Pae inhibited HSCs activation and histone trimethylation modification in liver of CCl4-induced mice and LX-2 cells. We demonstrated that the inhibitory effect of Pae on the activation of HSCs was dependent on peroxisome proliferator-activated receptor γ (PPARγ) expression and enhancer of zeste homolog 2 (EZH2). Mechanistically, Pae directly binded to EZH2 to effectively suppress its enzymatic activity. This attenuation leaded to the suppression of histone H3K27 trimethylation in the PPARγ promoter region, which induced upregulation of PPARγ expression. CONCLUSION: This investigative not only sheds new light on the precise targets that underlie the remission of hepatic fibrogenesis induced by Pae but also emphasizes the critical significance of EZH2-mediated H3K27 trimethylation in driving the pathogenesis of liver fibrosis.


Assuntos
Tetracloreto de Carbono , Proteína Potenciadora do Homólogo 2 de Zeste , Glucosídeos , Células Estreladas do Fígado , Histonas , Cirrose Hepática , Monoterpenos , PPAR gama , Animais , Glucosídeos/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , PPAR gama/metabolismo , Monoterpenos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Histonas/metabolismo , Camundongos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Masculino , Humanos , Camundongos Endogâmicos C57BL , Metilação , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Simulação de Acoplamento Molecular
13.
Phytomedicine ; 123: 155209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984123

RESUMO

BACKGROUND: Soothing the liver and regulating qi is one of the core ideas of traditional Chinese medicine (TCM) in the treatment of fatty liver. Si-Ni-San (SNS) is a well-known herbal formula in TCM for liver soothing and qi regulation in fatty liver treatment. However, its efficacy lacks modern scientific evidence. PURPOSE: This study was aimed to investigate the impact of SNS on metabolic associated fatty liver disease (MAFLD) in mice and explore the underlying molecular mechanisms, particularly its effects on lipid metabolism in hepatocytes. METHODS: The therapeutic effect of SNS was evaluated using in vivo and in vitro models of high-fat/high-cholesterol (HFHC) diet-induced mice and palmitic acid (PA)-induced hepatocytes, respectively. Molecular biological techniques such as RNA-sequencing (RNA-seq), co-immunoprecipitation (co-IP), and western blotting were employed to elucidate the molecular mechanism of SNS in regulating lipid metabolism in hepatocytes. RESULTS: Our findings revealed that SNS effectively reduced lipid accumulation in the livers of HFHC diet-induced mice and PA-induced hepatocytes. RNA-seq analysis demonstrated that SNS significantly down-regulated the expression of fatty acid synthase (Fasn) in the livers of HFHC-fed mice. Mechanistically, SNS inhibited Fasn expression and lipid accumulation by activating adenosine monophosphate (AMP)-activated protein kinase (AMPK). Activation of AMPK suppressed the activity of the transcriptional coactivator p300 and modulated the protein stability of sterol regulatory element-binding protein-1c (SREBP-1c). Importantly, p300 was required for the inhibition of Fasn expression and lipid accumulation by SNS. Furthermore, SNS activated AMPK by decreasing adenosine triphosphate (ATP) production in hepatocytes. CONCLUSION: This study provided novel evidence on the regulatory mechanisms underlying the effects of SNS on Fasn expression. Our findings demonstrate, for the first time, that SNS exerts suppressive effects on Fasn expression through modulation of the AMPK/p300/SREBP-1c axis. Consequently, this regulatory pathway mitigates excessive lipid accumulation and ameliorates MAFLD in mice.


Assuntos
Proteínas Quinases Ativadas por AMP , Medicamentos de Ervas Chinesas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fígado , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Metabolismo dos Lipídeos , Ácido Graxo Sintases/metabolismo , Colesterol/metabolismo , Estabilidade Proteica
14.
Food Chem ; 460(Pt 1): 140532, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39053283

RESUMO

Larimichthys crocea (LYC) holds significant economic value as a marine fish species. However, inaccuracies in labeling its origin can adversely affect consumer interests. Herein, a laser assisted rapid evaporative ionization mass spectrometry (LA-REIMS) and machine learning (ML) was developed for geographical authentication. When compared to iKnife, the LA demonstrated to be superior owing to reduced thermal damage to sample tissue, enhanced automation, and ease of use. Analysis of LYC from six distinct geographical origins across China revealed a total of 798 ions, which were then subjected to six classifiers to establish ML models. Following hyperparameter optimization and feature engineering, the Chi2(15%)-KNN model exhibited the highest training and testing accuracy, achieving 98.4 ± 0.9% and 98.5 ± 1.4%, respectively. This LA-REIMS/ML methodology offers a rapid, accurate, and intelligent solution for tracing the origin of LYC, thereby providing valuable technical support for the establishment of traceability systems in the aquatic product industry.

15.
Nat Prod Bioprospect ; 13(1): 36, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37804362

RESUMO

Quzhou Aurantii Fructus (QAF) has a long history as a folk medicine and food for the treatment of liver diseases. While our earlier study provided evidence of hepatoprotective properties contained within the flavonoids and limonins constituents in QAF, the potential preventative effects afforded by essential oil components present within QAF remains enigmatic. In this study, we prepared Quzhou Aurantii Fructus essential oil (QAFEO) and confirmed its anti-inflammatory effects on liver inflammation through experimentation on lipopolysaccharide and D-galactosamine (LPS/D-GalN) induced acute liver failure (ALF) mouse models. Using RNA-sequence (RNA-seq) analysis, we found that QAFEO prevented ALF by systematically blunting the pathways involved in response to LPS and toll-like receptor signaling pathways. QAFEO effectively suppressed the phosphorylation of tank-binding kinase 1 (TBK1), TGF-beta activated kinase 1 (TAK1), interferon regulatory factor 3 (IRF3), and the activation of mitogen activated kinase-like protein (MAPK) and nuclear factor-kappa B (NF-κB) pathways in vivo and in vitro. Importantly, QAFEO substantially reduced myeloid differentiation primary response gene 88 (MyD88)- toll-like receptor 4 (TLR4) interaction levels. Moreover, 8 compounds from QAFEO could directly bind to REAL, TAK1, MyD88, TBK1, and IRF3. Taken together, the results of our study support the notion that QAFEO exerts a hepatoprotective effect through inhibiting LPS-mediated inflammatory response.

16.
Int J Mol Sci ; 13(5): 6521-6533, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22754381

RESUMO

Drug resistance is a major factor for the limited efficacy of chemotherapy in gastric cancer treatment. Hypoxia-inducible factor-1α (HIF-1α), a central transcriptional factor in hypoxia, is suggested to participate in the resistance. Here, we identified a hypoxia-mimic (cobalt chloride) sensitive gastric cell line BGC-823 to explore whether diosgenin, an aglycone of steroidal saponins, can inhibit cancer cell invasion and survival of solid tumor in a hypoxic mimic microenvironment. We have shown that diosgenin is a potent candidate for decreasing the ability of invasion and survival in cobalt chloride treated BGC-823 cells. In addition, when combined with HIF-1α specific short hairpin RNA (shRNA), diosgenin can inhibit BGC-823 cells more effectively. The anti-invasion role of diosgenin may be related to E-cadherin, integrinα5 and integrin ß6. These results suggest that diosgenin may be a useful compound in controlling gastric cancer cells in hypoxia condition, especially when combined with down-regulated HIF-1α.


Assuntos
Cobalto/farmacologia , Diosgenina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , RNA Interferente Pequeno/metabolismo , Neoplasias Gástricas/metabolismo , Caderinas/genética , Caderinas/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Integrina alfa5/genética , Integrina alfa5/metabolismo , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Invasividade Neoplásica , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
17.
Math Biosci Eng ; 19(6): 5772-5792, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35603378

RESUMO

BACKGROUND: The newly identified betacoronavirus SARS-CoV-2 is the causative pathogen of the 2019 coronavirus disease (COVID-19), which has killed more than 4.5 million people. SARS-CoV-2 causes severe respiratory distress syndrome by targeting the lungs and also induces myocardial damage. Shenshao Ningxin Yin (SNY) has been used for more than 700 years to treat influenza. Previous randomized controlled trials (RCTs) have demonstrated that SNY can improve the clinical symptoms of viral myocarditis, reverse arrhythmia, and reduce the level of myocardial damage markers. METHODS: This work uses a rational computational strategy to identify existing drug molecules that target host pathways for the treatment of COVID-19 with myocarditis. Disease and drug targets were input into the STRING database to construct proteinɃprotein interaction networks. The Metascape database was used for GO and KEGG enrichment analysis. RESULTS: SNY signaling modulated the pathways of coronavirus disease, including COVID-19, Ras signaling, viral myocarditis, and TNF signaling pathways. Tumor necrosis factor (TNF), cellular tumor antigen p53 (TP53), mitogen-activated protein kinase 1 (MAPK1), and the signal transducer and activator of transcription 3 (STAT3) were the pivotal targets of SNY. The components of SNY bound well with the pivotal targets, indicating there were potential biological activities. CONCLUSION: Our findings reveal the pharmacological role and molecular mechanism of SNY for the treatment of COVID-19 with myocarditis. We also, for the first time, demonstrate that SNY displays multi-component, multi-target, and multi-pathway characteristics with a complex mechanism of action.


Assuntos
Tratamento Farmacológico da COVID-19 , Miocardite , Medicamentos de Ervas Chinesas , Humanos , Simulação de Acoplamento Molecular , Miocardite/tratamento farmacológico , SARS-CoV-2
18.
Front Pharmacol ; 13: 957829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147338

RESUMO

Background: Yunpi-Huoxue-Sanjie (YP-SJ) formula is a Chinese herbal formula with unique advantages for the treatment of diabetic cardiovascular complications, such as Diabetic cardiomyopathy (DCM). However, potential targets and molecular mechanisms remain unclear. Therefore, our research was designed to evaluate rat myocardial morphology, fat metabolism and oxidative stress to verify myocardial protective effect of YP-SJ formula in vivo. And then to explore and validate its probable mechanism through network pharmacology and experiments in vitro and in vivo. Methods: In this study, DCM rats were randomly divided into five groups: control group, model group, and three YP-SJ formula groups (low-dose, middle-dose, and high-dose groups). Experimental rats were treated with 6 g/kg/d, 12 g/kg/d and 24 g/kg/d YP-SJ formula by gavage for 10 weeks, respectively. Cardiac function of rats was measured by high-resolution small-animal imaging system. The cells were divided into control group, high glucose group, high glucose + control serum group, high glucose + dosed serum group, high glucose + NC-siRNA group, high glucose + siRNA-FoxO1 group. The extent of autophagy was measured by flow cytometry, immunofluorescence, and western blotting. Results: It was found that YP-SJ formula could effectively improve cardiac systolic function in DCM rats. We identified 46 major candidate YP-SJ formula targets that are closely related to the progression of DCM. Enrichment analysis revealed key targets of YP-SJ formula related to environmental information processing, organic systems, and the metabolic occurrence of reactive oxygen species. Meanwhile, we verified that YP-SJ formula can increase the expression of forkhead box protein O1 (FoxO1), autophagy-related protein 7 (Atg7), Beclin 1, and light chain 3 (LC3), and decrease the expression of phosphorylated FoxO1 in vitro and in vivo. The results showed that YP-SJ formula could activate the FoxO1 signaling pathway associated with DCM rats. Further experiments showed that YP-SJ formula could improve cardiac function by regulating autophagy. Conclusion: YP-SJ formula treats DCM by modulating targets that play a key role in autophagy, improving myocardial function through a multi-component, multi-level, multi-target, multi-pathway, and multi-mechanism approach.

19.
Phytother Res ; 25(4): 536-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20839213

RESUMO

Phytochemical investigation of the CH(2) Cl(2) extract of the aerial part of Hypericum sampsonii yielded two new prenylated xanthones, hypericumxanthone A and B, together with three known xanthones. Their structures were elucidated by analysis of physical and spectral (UV, IR, mass and NMR) data and comparison of spectroscopic data with those reported previously. All these compounds were evaluated for in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Two new compounds were also tested for their cytotoxicity against human breast (MCF-7), hepatoma (HepG2), colon (HT-29) and lung (A549) tumour cell lines. Two new compounds showed moderate antibacterial activities at minimum inhibitory concentrations (MIC) of 16 and 32 µg/mL, respectively, whereas the positive standard antibacterial drug, vancomycin, showed an MIC of 8 µg/mL. The other compounds were inactive against MRSA. In addition, hypericumxanthone B showed weak inhibitory activities against four human tumour cell lines.


Assuntos
Hypericum/química , Xantonas/isolamento & purificação , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Análise Espectral/métodos , Xantonas/química , Xantonas/farmacologia
20.
Zhong Xi Yi Jie He Xue Bao ; 9(8): 894-900, 2011 Aug.
Artigo em Zh | MEDLINE | ID: mdl-21849151

RESUMO

OBJECTIVE: To observe the effects of ethanol extract of Rhizome Pinelliae Preparata on the intracellular pH value of human gastric cancer SGC7901 cells. METHODS: After coculturing SGC7901 cells with ethanol extract of Rhizome Pinelliae Preparata (1, 0.5, 0.25 and 0.125 mg/mL), cell viability was evaluated by chromatometry with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining. Intracellular pH value of SGC7901 cells was measured in the monolayer by using the pH-sensitive fluorescent probe 2,7-bis-(2-carboxyethyl)-5-carboxyfluorescein-acetoxymethyl ester. The extracellular pH value of culture medium was measured by a pH211 Calibration Check Microprocessor pH Meter. Half-inhibitory concentration (IC(50)) of ethanol extract culture to SGC7901 cells was decided by the MTT method and expressions of vacuolar-H(+)-ATPase (V-ATPase) and Na(+)/H(+) exchanger isoform 1 (NHE1) mRNAs were examined by the method of fluorescence quantitative-polymerase chain reaction after 72 h of drug treatment. RESULTS: Ethanol extract of Rhizome Pinelliae Preparata at different concentrations significantly inhibited the proliferation of SGC7901 cells, lowered the intracellular pH values and heightened the extracellular pH values. The IC(50) of 72 h culture was 0.5mg/mL and it inhibited the expressions of V-ATPase and NHE1 mRNAs. CONCLUSION: Ethanol extract of Rhizome Pinelliae Preparata can lower down the intracellular pH value of SGC7901 cells. The mechanism may be related to inhibiting the expressions of V-ATPase and NHE1 mRNAs.


Assuntos
Adenocarcinoma/fisiopatologia , Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia , Neoplasias Gástricas/fisiopatologia , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Pinellia/química , Rizoma/química , Trocador 1 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA