Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(18): 5346-5367, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35583661

RESUMO

The globally widespread adoption of Artificial Light at Night (ALAN) began in the mid-20th century. Yet, it is only in the last decade that a renewed research focus has emerged into its impacts on ecological and biological processes in the marine environment that are guided by natural intensities, moon phase, natural light and dark cycles and daily light spectra alterations. The field has diversified rapidly from one restricted to impacts on a handful of vertebrates, to one in which impacts have been quantified across a broad array of marine and coastal habitats and species. Here, we review the current understanding of ALAN impacts in diverse marine ecosystems. The review presents the current state of knowledge across key marine and coastal ecosystems (sandy and rocky shores, coral reefs and pelagic) and taxa (birds and sea turtles), introducing how ALAN can mask seabird and sea turtle navigation, cause changes in animals predation patterns and failure of coral spawning synchronization, as well as inhibition of zooplankton Diel Vertical Migration. Mitigation measures are recommended, however, while strategies for mitigation were easily identified, barriers to implementation are poorly understood. Finally, we point out knowledge gaps that if addressed would aid in the prediction and mitigation of ALAN impacts in the marine realm.


Assuntos
Antozoários , Ecossistema , Animais , Recifes de Corais , Luz , Poluição Luminosa
2.
Sci Total Environ ; 815: 152136, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921886

RESUMO

Reef-building corals are increasingly threatened by global and regional stresses, which affect the stability of the coral-Symbiodiniaceae association. Among them, plastic pollution has been an ongoing and growing concern. Whereas several studies have highlighted the detrimental impact of microplastics (0.1 µm-5 mm) on corals and their symbiotic dinoflagellate algae, the physiological changes induced by nanoplastic (NP, <0.1 µm) pollution are still poorly known. Long-term experiments (4 weeks) were conducted to investigate the effects of ecologically relevant NP concentrations (0 to 0.5 mg/L of 20 nm polystyrene NPs) on two Symbiodiniaceae in culture [CCMP2467 or Clade A1 and pd44b or Clade F1]. The effects of 0.5 mg/L NPs were also evaluated on Clade A1 living in symbiosis with the coral Stylophora pistillata, to assess the in hospite effects of NPs on coral symbionts. The photosynthetic efficiency of photosystem II, the oxidative status of the Symbiodiniaceae and the coral host, as well as the host-symbiont stability were evaluated at the end of the experiment. Symbiodiniaceae in culture exhibited a significant decrease in the maximal electron transport rate (ETRmax) at NP concentrations as low as 0.005 mg/L, highlighting an impairment of the photosynthetic capacities of the dinoflagellates in presence of nanoplastics. Also, Clade A1 exhibited a significant decrease in its Total Antioxidant Capacity (TAC) and an increase in Lipid Peroxidation (LPO), which evidence oxidative stress and cellular damage. Interestingly, Clade A1 in hospite did not show any signs of oxidative stress, however, the coral host exhibited increased TAC and LPO. Additionally, exposure of S. pistillata to 0.5 mg/L NPs induced significant bleaching (loss of symbionts and photosynthetic pigments). Overall, NPs were detrimental for both the Symbiodiniaceae in culture and the host-symbiont association. In the future, the persistence of reef corals may be severely impacted by the cumulative effects of nanoplastic pollution along with global warming.


Assuntos
Antozoários , Dinoflagellida , Animais , Branqueamento de Corais , Recifes de Corais , Microplásticos , Plásticos , Poliestirenos , Simbiose
3.
Sci Total Environ ; 651(Pt 1): 261-270, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30236843

RESUMO

Climate change, pollution and increased runoff are some of the main drivers of coral reefs degradation worldwide. However, the occurrence of runoff and marine pollution, as well as its ecological effects in South Atlantic coral reefs are still poorly understood. The aim of the present work is to characterize the terrigenous influence and contamination impact on the environmental health of five reefs located along a gradient of distance from a river source, using geochemical, water quality, and ecological indicators. Stable isotopes and sterols were used as geochemical indicators of sewage and terrigenous organic matter. Dissolved metal concentrations (Cu, Zn, Cd, and Pb) were used as indicators of water quality. Population density, bleaching and chlorophyll α content of the symbiont-bearing foraminifer Amphistegina gibbosa, were used as indicators of ecological effects. Sampling was performed four times during the year to assess temporal variability. Sediment and water quality indicators showed that reefs close to the river discharge experience nutrient enrichment and sewage contamination, and metals concentrations above international environmental quality guidelines. Higher levels of contamination were strongly related to the higher frequency of bleaching and lower density in A. gibbosa populations. The integrated evaluation of stable isotopes, sterols and metals provided a consistent diagnostic about sewage influence on the studied reefs. Additionally, the observed bioindicator responses evidenced relevant ecological effects. The water quality, geochemical and ecological indicators employed in the present study were effective as biomonitoring tools to be applied in reefs worldwide.


Assuntos
Recifes de Corais , Foraminíferos/fisiologia , Metais/efeitos adversos , Esteroides/efeitos adversos , Poluentes Químicos da Água/efeitos adversos , Qualidade da Água , Brasil , Monitoramento Ambiental , Geografia , Densidade Demográfica , Rios
4.
Ecol Evol ; 5(20): 4555-66, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26668722

RESUMO

We describe a completely randomizable flow-through outdoor mesocosm for climate change and ecotoxicology studies that was built with inexpensive materials. The 16 raceway tanks allow up to 6× water renewal per hour, avoiding changes in natural abiotic seawater conditions. We use an open-source hardware board (Arduino) that was adapted to control heaters and an innovative CO 2 injection system. This system reduced seawater pH up to -0.9 units and increased temperature up to +6°C in three treatments and a control. Treatments can be continuously compared with the control and vary according to diel fluctuations, thus following the diel range observed in the sea. The mesocosm facility also includes an integrated secondary system of 48 aquaria for ecotoxicology studies. We validated the reproducibility and relevance of our experimental system by analyzing the variation of the total DNA of the microbial community extracted from corals in three elevated temperature scenarios during a 40-day experiment. We also present data from temperature, acidification, and copper contamination trials, which allowed continuous, reliable, and consistent treatment manipulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA