Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 110(1): 105-121, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34288381

RESUMO

In order to improve water and oxygen barrier properties, the surface of two commercial medical grade polyurethane (PU) membranes (Chronoflex® AR-LT and Bionate® II) was modified by a spray deposited film of poly(ethylene-co-vinyl alcohol) (EVOH). The influence of the temperature, the deposited layer thickness and the EVOH ethylene group percentage (27%, 32%, and 44% for EVOH27, EVOH32, and EVOH44, respectively) on the barrier properties of the PU/EVOH multilayered membranes was investigated. The increase of the EVOH layer thickness leads to higher oxygen barrier properties (the highest barrier improvement factor of 412 was obtained). However, in case of the deposited layer thickness higher than 18 µm, microcracks appeared on the treated surface promote a significant loss of the barrier effect. Due to its higher crystallinity degree, EVOH27 provides a higher oxygen barrier effect compared to EVOH32 and EVOH44. On the contrary, an increase of the water barrier properties was observed with the increase of the percentage of ethylene groups. Moreover, the delamination of the EVOH layer was noted after water permeation, especially in case of EVOH44, which is the most hydrophobic layer. Nevertheless, significant decrease of the water and oxygen permeability of the modified PU membranes was achieved, thus showing the benefit of using the EVOH spray deposition for the biomedical application, which requires high performance material with flexible and barrier properties.


Assuntos
Embalagem de Alimentos , Água , Oxigênio/química , Poliuretanos , Polivinil/química
2.
ACS Biomater Sci Eng ; 3(12): 3654-3661, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33445400

RESUMO

One major factor inhibiting natural wound-healing processes is infection through bacterial biofilms, particularly in the case of chronic wounds. In this study, the micro/nanostructure of a wound dressing was optimized in order to obtain a more efficient antibiofilm protein-release profile for biofilm inhibition and/or detachment. A 3D substrate was developed with asymmetric polyhydroxyalkanoate (PHA) membranes to entrap Dispersin B (DB), the antibiofilm protein. The membranes were prepared using wet-induced phase separation (WIPS). By modulating the concentration and the molecular weight of the porogen polymer, polyvinylpyrrolidone (PVP), asymmetric membranes with controlled porosity were obtained. PVP was added at 10, 30, and 50% w/w, relative to the total polymer concentration. The physical and kinetic properties of the quaternary nonsolvent/solvent/PHA/PVP systems were studied and correlated with the membrane structures obtained. The results show that at high molecular weight (Mw = 360 kDa) and high PVP content (above 30%), pore size decreased and the membrane became extremely brittle with serious loss of physical integrity. This brittle effect was not observed for low molecular weight PVP (Mw = 40 kDa) at comparable contents. Whatever the molecular weight, porogen content up to 30% increased membrane surface porosity and consequently protein uptake. Above 30% porogen content, the pore size and the physical integrity/mechanical robustness both decreased. The PHA membranes were loaded with DB and their antibiofilm activity was evaluated against Staphylococcus epidermidis biofilms. When the bacterial biofilms were exposed to the DB-loaded PHA membrane, up to 33% of the S. epidermidis biofilm formation was inhibited, while 26% of the biofilm already formed was destroyed. These promising results validate our approach based on the development of bioactive-protein-loaded asymmetric membranes for antibiofilm strategies in situations where traditional antibiotic therapies are ineffective.

3.
Colloids Surf B Biointerfaces ; 136: 56-63, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26363267

RESUMO

It is known for roughly a decade that bacterial communities (called biofilms) are responsible for significant enhanced antibiotherapy resistance. Biofilms are involved in tissue persistent infection, causing direct or collateral damage leading to chronic wounds development and impairing natural wound healing. In this study, we are interested in the development of supported protein materials which consist of asymmetric membranes as reservoir supports for the incorporation and controlled release of biomolecules capable of dissolving biofilms (or preventing their formation) and their use as wound dressing for chronic wound treatment. In a first step, polyhydroxyalkanoates (PHAs) asymmetric membranes were prepared using wet phase inversion technique. Scanning microscopy (SEM) analysis has showed the influence of different processing parameters. In a second step, the porous side of the membranes were functionalized with a surface treatment and then loaded with the antibiofilm agent (dispersin B). In a third step, the properties and antibiofilm performance of the loaded-membranes were evaluated. Exposure of Staphylococcus epidermidis biofilms to such systems weakly inhibited biofilm formation (weak preventive effect) but caused their detachment and disaggregation (strong curative effect). These initial results are promising since they open the way to a new generation of effective tools in the struggle against persistent bacterial infections exhibiting enhanced antibiotherapy resistance, and in particular in the case of infected chronic wounds.


Assuntos
Biofilmes , Materiais Biocompatíveis , Membranas Artificiais , Microscopia Eletrônica de Varredura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA