Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Dermatol ; 190(5): 740-750, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38214572

RESUMO

BACKGROUND: Malignant melanoma (MM) is a highly aggressive form of skin cancer whose incidence continues to rise worldwide. If diagnosed at an early stage, it has an excellent prognosis, but mortality increases significantly at advanced stages after distant spread. Unfortunately, early detection of aggressive melanoma remains a challenge. OBJECTIVES: To identify novel blood-circulating biomarkers that may be useful in the diagnosis of MM to guide patient counselling and appropriate disease management. METHODS: In this study, 105 serum samples from 26 healthy patients and 79 with MM were analysed using an untargeted approach by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to compare the metabolomic profiles of both conditions. Resulting data were subjected to both univariate and multivariate statistical analysis to select robust biomarkers. The classification model obtained from this analysis was further validated with an independent cohort of 12 patients with stage I MM. RESULTS: We successfully identified several lipidic metabolites differentially expressed in patients with stage I MM vs. healthy controls. Three of these metabolites were used to develop a classification model, which exhibited exceptional precision (0.92) and accuracy (0.94) when validated on an independent sample. CONCLUSIONS: These results demonstrate that metabolomics using LC-HRMS is a powerful tool to identify and quantify metabolites in bodily fluids that could serve as potential early diagnostic markers for MM.


Melanoma is a type of skin cancer that can be deadly if it is not detected at an early stage. Unfortunately, the early detection of melanoma is challenging. Our team has developed a model that could be used to predict whether a person has stage I malignant melanoma based on blood serum analysis. The model was trained on data from a group of people with melanoma and it was found to be accurate in predicting melanoma at an early stage. This means that the model could be used to identify people who have skin cancer before it progresses and becomes more complicated to treat. Although the researchers recommend that further studies are conducted to validate the model in a larger population of people, this research could help with the early diagnosis of melanoma and work toward improving survival rates.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Projetos Piloto , Detecção Precoce de Câncer , Metabolômica , Biomarcadores , Espectrometria de Massa com Cromatografia Líquida
2.
Nucleic Acids Res ; 50(W1): W710-W717, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35556129

RESUMO

The NCBI Sequence Read Archive currently hosts microRNA sequencing data for over 800 different species, evidencing the existence of a broad taxonomic distribution in the field of small RNA research. Simultaneously, the number of samples per miRNA-seq study continues to increase resulting in a vast amount of data that requires accurate, fast and user-friendly analysis methods. Since the previous release of sRNAtoolbox in 2019, 55 000 sRNAbench jobs have been submitted which has motivated many improvements in its usability and the scope of the underlying annotation database. With this update, users can upload an unlimited number of samples or import them from Google Drive, Dropbox or URLs. Micro- and small RNA profiling can now be carried out using high-confidence Metazoan and plant specific databases, MirGeneDB and PmiREN respectively, together with genome assemblies and libraries from 441 Ensembl species. The new results page includes straightforward sample annotation to allow downstream differential expression analysis with sRNAde. Unassigned reads can also be explored by means of a new tool that performs mapping to microbial references, which can reveal contamination events or biologically meaningful findings as we describe in the example. sRNAtoolbox is available at: https://arn.ugr.es/srnatoolbox/.


Assuntos
MicroRNAs , Pequeno RNA não Traduzido , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Análise de Sequência de RNA , Bases de Dados Factuais
3.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958993

RESUMO

Breast cancer (BC) is the most diagnosed cancer in women and the second most common cancer globally. Significant advances in BC research have led to improved early detection and effective therapies. One of the key challenges in BC is the presence of BC stem cells (BCSCs). This small subpopulation within the tumor possesses unique characteristics, including tumor-initiating capabilities, contributes to treatment resistance, and plays a role in cancer recurrence and metastasis. In recent years, microRNAs (miRNAs) have emerged as potential regulators of BCSCs, which can modulate gene expression and influence cellular processes like BCSCs' self-renewal, differentiation, and tumor-promoting pathways. Understanding the miRNA signatures of BCSCs holds great promise for improving BC diagnosis and prognosis. By targeting BCSCs and their associated miRNAs, researchers aim to develop more effective and personalized treatment strategies that may offer better outcomes for BC patients, minimizing tumor recurrence and metastasis. In conclusion, the investigation of miRNAs as regulators of BCSCs opens new directions for advancing BC research through the use of bioinformatics and the development of innovative therapeutic approaches. This review summarizes the most recent and innovative studies and clinical trials on the role of BCSCs miRNAs as potential tools for early diagnosis, prognosis, and resistance.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo , Diferenciação Celular
4.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674737

RESUMO

In general, the risk of being diagnosed with cancer increases with age; however, the development of estrogen-receptor-positive (ER+) cancer types in women are more closely related to menopausal status than age. In fact, the general risk factors for cancer development, such as obesity-induced inflammation, show differences in their association with ER+ cancer risk in pre- and postmenopausal women. Here, we tested the role of the principal estrogens in the bloodstream before and after menopause, estradiol (E2) and estrone (E1), respectively, on inflammation, epithelial-to-mesenchymal transition (EMT) and cancer stem cell enrichment in the human ER+ cervical cancer cell line HeLa. Our results demonstrate that E1, contrary to E2, is pro-inflammatory, increases embryonic stem-transcription factors (ES-TFs) expression and induces EMT in ER+ HeLa cells. Moreover, we observed that high intratumoural expression levels of 17ß-Hydroxysteroid dehydrogenase (HSD17B) isoforms involved in E1 synthesis is a poor prognosis factor, while overexpression of E2-synthetizing HSD17B isoforms is associated with a better outcome, for patients diagnosed with ER+ ovarian and uterine corpus carcinomas. This work demonstrates that E1 and E2 have different biological functions in ER+ gynaecologic cancers. These results open a new line of research in the study of ER+ cancer subtypes, highlighting the potential key oncogenic role of E1 and HSD17B E1-synthesizing enzymes in the development and progression of these diseases.


Assuntos
Estrona , Neoplasias , Humanos , Feminino , Estrona/metabolismo , Estradiol/metabolismo , NF-kappa B , Células HeLa , Inflamação
5.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069079

RESUMO

The main aim of this study is to report basic knowledge on how a protein corona (PC) could affect or modify the way in which multifunctionalized nanoparticles interact with cells. With this purpose, we have firstly optimized the development of a target-specific nanocarrier by coupling a specific fluorescent antibody on the surface of functionalized lipid liquid nanocapsules (LLNCs). Thus, an anti-HER2-FITC antibody (αHER2) has been used, HER2 being a surface receptor that is overexpressed in several tumor cells. Subsequently, the in vitro formation of a PC has been developed using fetal bovine serum supplemented with human fibrinogen. Dynamic Light Scattering (DLS), Nanoparticle Tracking Analysis (NTA), Laser Doppler Electrophoresis (LDE), and Gel Chromatography techniques have been used to assure a complete physico-chemical characterization of the nano-complexes with (LLNCs-αHER2-PC) and without (LLNCs-αHER2) the surrounding PC. In addition, cellular assays were performed to study the cellular uptake and the specific cellular-nanocarrier interactions using the SKBR3 (high expression of HER2) breast cancer cell line and human dermal fibroblasts (HDFa) (healthy cell line without expression of HER2 receptors as control), showing that the SKBR3 cell line had a higher transport rate (50-fold) than HDFa at 60 min with LLNCs-αHER2. Moreover, the SKBR3 cell line incubated with LLNCs-αHER2-PC suffered a significant reduction (40%) in the uptake. These results suggest that the formation of a PC onto LLNCs does not prevent specific cell targeting, although it does have an important influence on cell uptake.


Assuntos
Nanopartículas , Coroa de Proteína , Humanos , Coroa de Proteína/química , Receptor ErbB-2/metabolismo , Anticorpos , Células MCF-7 , Lipídeos , Nanopartículas/química
6.
Med Res Rev ; 42(5): 1978-2001, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35707911

RESUMO

The complexity of the tumor microenvironment (TME) together with the development of the metastatic process are the main reasons for the failure of conventional anticancer treatment. In recent years, there is an increasing need to advance toward advanced in vitro models of cancer mimicking TME and simulating metastasis to understand the associated mechanisms that are still unknown, and to be able to develop personalized therapy. In this review, the commonly used alternatives and latest advances in biofabrication of tumor-on-chips, which allow the generation of the most sophisticated and optimized models for recapitulating the tumor process, are presented. In addition, the advances that have allowed these new models in the area of metastasis, cancer stem cells, and angiogenesis are summarized, as well as the recent integration of multiorgan-on-a-chip systems to recapitulate natural metastasis and pharmacological screening against it. We also analyze, for the first time in the literature, the normative and regulatory framework in which these models could potentially be found, as well as the requirements and processes that must be fulfilled to be commercially implemented as in vitro study model. Moreover, we are focused on the possible regulatory pathways for their clinical application in precision medicine and decision making through the generation of personalized models with patient samples. In conclusion, this review highlights the synergistic combination of three-dimensional bioprinting systems with the novel tumor/metastasis/multiorgan-on-a-chip systems to generate models for both basic research and clinical applications to have devices useful for personalized oncology.


Assuntos
Bioimpressão , Neoplasias , Bioimpressão/métodos , Humanos , Dispositivos Lab-On-A-Chip , Neoplasias/tratamento farmacológico , Medicina de Precisão/métodos , Microambiente Tumoral
7.
Nucleic Acids Res ; 48(W1): W262-W267, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32484556

RESUMO

Although miRNA-seq is extensively used in many different fields, its quality control is frequently restricted to a PhredScore-based filter. Other important quality related aspects like microRNA yield, the fraction of putative degradation products (such as rRNA fragments) or the percentage of adapter-dimers are hard to assess using absolute thresholds. Here we present mirnaQC, a webserver that relies on 34 quality parameters to assist in miRNA-seq quality control. To improve their interpretability, quality attributes are ranked using a reference distribution obtained from over 36 000 publicly available miRNA-seq datasets. Accepted input formats include FASTQ and SRA accessions. The results page contains several sections that deal with putative technical artefacts related to library preparation, sequencing, contamination or yield. Different visualisations, including PCA and heatmaps, are available to help users identify underlying issues. Finally, we show the usefulness of this approach by analysing two publicly available datasets and discussing the different quality issues that can be detected using mirnaQC.


Assuntos
MicroRNAs/química , Análise de Sequência de RNA/normas , Software , Artefatos , Feminino , Humanos , MicroRNAs/metabolismo , Controle de Qualidade , Neoplasias do Colo do Útero/genética
8.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955853

RESUMO

The increase in cancer incidences shows that there is a need to better understand tumour heterogeneity to achieve efficient treatments. Interestingly, there are several common features among almost all types of cancers, with chronic inflammation induction and deaminase dysfunctions singled out. Deaminases are a family of enzymes with nucleotide-editing capacity, which are classified into two main groups: DNA-based and RNA-based. Remarkably, a close relationship between inflammation and the dysregulation of these molecules has been widely documented, which may explain the characteristic intratumor heterogeneity, both at DNA and transcriptional levels. Indeed, heterogeneity in cancer makes it difficult to establish a unique tumour progression model. Currently, there are three main cancer models-stochastic, hierarchic, and dynamic-although there is no consensus on which one better resembles cancer biology because they are usually overly simplified. Here, to accurately explain tumour progression, we propose interactions among chronic inflammation, deaminases dysregulation, intratumor genetic heterogeneity, cancer phenotypic plasticity, and even the previously proposed appearance of cancer stem-like cell populations in the edges of advanced solid tumour masses (instead of being the cells of origin of primary malignancies). The new tumour development model proposed in this study does not contradict previously accepted models and it may open up a window to interesting therapeutic approaches.


Assuntos
Neoplasias , Citidina Desaminase/genética , DNA/metabolismo , Humanos , Inflamação , Neoplasias/genética , Neoplasias/patologia , RNA/metabolismo , Edição de RNA
9.
Int J Mol Sci ; 23(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555218

RESUMO

Tumours are complex systems with dynamic interactions between tumour cells, non-tumour cells, and extracellular components that comprise the tumour microenvironment (TME). The majority of TME's cells are cancer-associated fibroblasts (CAFs), which are crucial in extracellular matrix (ECM) construction, tumour metabolism, immunology, adaptive chemoresistance, and tumour cell motility. CAF subtypes have been identified based on the expression of protein markers. CAFs may act as promoters or suppressors in tumour cells depending on a variety of factors, including cancer stage. Indeed, CAFs have been shown to promote tumour growth, survival and spread, and secretome changes, but they can also slow tumourigenesis at an early stage through mechanisms that are still poorly understood. Stromal-cancer interactions are governed by a variety of soluble factors that determine the outcome of the tumourigenic process. Cancer cells release factors that enhance the ability of fibroblasts to secrete multiple tumour-promoting chemokines, acting on malignant cells to promote proliferation, migration, and invasion. This crosstalk between CAFs and tumour cells has given new prominence to the stromal cells, from being considered as mere physical support to becoming key players in the tumour process. Here, we focus on the concept of cancer as a non-healing wound and the relevance of chronic inflammation to tumour initiation. In addition, we review CAFs heterogeneous origins and markers together with the potential therapeutic implications of CAFs "re-education" and/or targeting tumour progression inhibition.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Neoplasias/metabolismo , Fibroblastos , Fibroblastos Associados a Câncer/metabolismo , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo , Microambiente Tumoral
10.
Small ; 17(14): e2006009, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33705602

RESUMO

For decades, several attempts have been made to obtain a mimetic model for the study of metastasis, the reason of most of deaths caused by cancer, in order to solve the unknown phenomena surrounding this disease. To better understand this cellular dissemination process, more realistic models are needed that are capable of faithfully recreating the entire and essential tumor microenvironment (TME). Thus, new tools known as tumor-on-a-chip and metastasis-on-a-chip have been recently proposed. These tools incorporate microfluidic systems and small culture chambers where TME can be faithfully modeled thanks to 3D bioprinting. In this work, a literature review has been developed about the different phases of metastasis, the remaining unknowns and the use of new models to study this disease. The aim is to provide a global vision of the current panorama and the great potential that these systems have for in vitro translational research on the molecular basis of the pathology. In addition, these models will allow progress toward a personalized medicine, generating chips from patient samples that mimic the original tumor and the metastatic process to perform a precise pharmacological screening by establishing the most appropriate treatment protocol.


Assuntos
Bioimpressão , Neoplasias , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica , Microambiente Tumoral
11.
Biomacromolecules ; 22(4): 1374-1388, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33724003

RESUMO

The latest trends in cancer research and nanomedicine focus on using nanocarriers to target cancer stem cells (CSCs). Specifically, lipid liquid nanocapsules are usually developed as nanocarriers for lipophilic drug delivery. Here, we developed olive oil liquid NCs (O2LNCs) functionalized by covalent coupling of an anti-CD44-fluorescein isothiocyanate antibody (αCD44). First, O2LNCs are formed by a core of olive oil surrounded by a shell containing phospholipids, a nonionic surfactant, and deoxycholic acid molecules. Then, O2LNCs were coated with an αCD44 antibody (αCD44-O2LNC). The optimization of an αCD44 coating procedure, a complete physicochemical characterization, as well as clear evidence of their efficacy in vitro and in vivo were demonstrated. Our results indicate the high targeted uptake of these αCD44-O2LNCs, and the increased antitumor efficacy (up to four times) of paclitaxel-loaded-αCD44-O2LNC compared to free paclitaxel in pancreatic CSCs (PCSCs). Also, αCD44-O2LNCs were able to selectively target PCSCs in an orthotopic xenotransplant in vivo model.


Assuntos
Nanocápsulas , Neoplasias Pancreáticas , Humanos , Células-Tronco Neoplásicas , Azeite de Oliva , Paclitaxel/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico
12.
Nucleic Acids Res ; 47(W1): W530-W535, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31114926

RESUMO

Since the original publication of sRNAtoolbox in 2015, small RNA research experienced notable advances in different directions. New protocols for small RNA sequencing have become available to address important issues such as adapter ligation bias, PCR amplification artefacts or to include internal controls such as spike-in sequences. New microRNA reference databases were developed with different foci, either prioritizing accuracy (low number of false positives) or completeness (low number of false negatives). Additionally, other small RNA molecules as well as microRNA sequence and length variants (isomiRs) have continued to gain importance. Finally, the number of microRNA sequencing studies deposited in GEO nearly triplicated from 2014 (280) to 2018 (764). These developments imply that fast and easy-to-use tools for expression profiling and subsequent downstream analysis of miRNA-seq data are essential to many researchers. Key features in this sRNAtoolbox release include addition of all major RNA library preparation protocols to sRNAbench and improvements in sRNAde, a tool that summarizes several aspects of small RNA sequencing studies including the detection of consensus differential expression. A special emphasis was put on the user-friendliness of the tools, for instance sRNAbench now supports parallel launching of several jobs to improve reproducibility and user time efficiency.


Assuntos
MicroRNAs/química , MicroRNAs/metabolismo , Software , Perfilação da Expressão Gênica , Variação Genética , Análise de Sequência de RNA
13.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35008796

RESUMO

The mitogen-activated protein kinase (MAPK) family is an important bridge in the transduction of extracellular and intracellular signals in different responses at the cellular level. Within this MAPK family, the p38 kinases can be found altered in various diseases, including cancer, where these kinases play a fundamental role, sometimes with antagonistic mechanisms of action, depending on several factors. In fact, this family has an immense number of functionalities, many of them yet to be discovered in terms of regulation and action in different types of cancer, being directly involved in the response to cancer therapies. To date, three main groups of MAPKs have been identified in mammals: the extracellular signal-regulated kinases (ERK), Jun N-terminal kinase (JNK), and the different isoforms of p38 (α, ß, γ, δ). In this review, we highlight the mechanism of action of these kinases, taking into account their extensive regulation at the cellular level through various modifications and modulations, including a wide variety of microRNAs. We also analyze the importance of the different isoforms expressed in the different tissues and their possible role as biomarkers and molecular targets. In addition, we include the latest preclinical and clinical trials with different p38-related drugs that are ongoing with hopeful expectations in the present/future of developing precision medicine in cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Ensaios Clínicos como Assunto , Humanos , Especificidade por Substrato
14.
Nanomedicine ; 24: 102120, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31676374

RESUMO

A novel chemical-based orthogonal bioconjugation strategy to produce tri-functionalized nanoparticles (NPs) an chemotherapy drug, doxorubicin (DOX), a near-infrared cyanine dye (Cy7) and CRGDK homing peptide, a peptide specifically binds to neuropilin-1 (Nrp-1) overexpressed on triple negative breast cancer (TNBC) cells, has been validated. These theranostic NPs have been evaluated in vitro and in vivo using an orthotopic xenotransplant mouse model using TNBC cells. In vitro assays show that theranostic NPs improve the therapeutic index in comparison with free DOX. Remarkably, in vivo studies showed preferred location of theranostic NPs in the tumor area reducing the volume at the same level than free DOX while presenting lower side effects. This multifunctionalized theranostic nanodevice based on orthogonal conjugation strategies could be a good candidate for the treatment and monitoring of Nrp-1 overexpressing tumors. Moreover, this versatile nanodevice can be easily adapted to treat and monitor different cancer types by adapting the conjugation strategy.


Assuntos
Carbocianinas , Doxorrubicina , Sistemas de Liberação de Medicamentos , Nanopartículas , Peptídeos , Nanomedicina Teranóstica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Carbocianinas/química , Carbocianinas/farmacologia , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Nanopartículas/química , Nanopartículas/uso terapêutico , Proteínas de Neoplasias/metabolismo , Neuropilina-1/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Adv Exp Med Biol ; 1277: 115-126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33119869

RESUMO

The importance of the microenvironment in tumor development and their resistance to drugs is increasingly well known. This microenvironment is composed of different cell types, among which cells with stemness properties such as cancer stem cells (CSCs) and mesenchymal stem cells (MSCs) are distinguished for their relevant role in tumor proliferation, angiogenesis, metastasis, and drug resistance. The relationship between these stem cells (SCs) and tumor microenvironment is conducted by the secretome, consisting of several factors, cytokines, chemokines, and hormones released to the surrounding stroma, which plays a deterministic role in tumor hallmarks. Knowing the intrinsic and complex communication network that SCs establish with the microenvironment will allow to address the tumor processes responsible for cancer progression and the generation of new targeted therapeutic approaches useful in the clinic arena.


Assuntos
Neoplasias , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral , Quimiocinas , Citocinas , Hormônios , Humanos , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica
16.
Adv Exp Med Biol ; 1059: 331-350, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29736581

RESUMO

Osteochondral (OC) lesions are a major cause of chronic musculoskeletal pain and functional disability, which reduces the quality of life of the patients and entails high costs to the society. Currently, there are no effective treatments, so in vitro and in vivo disease models are critically important to obtain knowledge about the causes and to develop effective treatments for OC injuries. In vitro models are essential to clarify the causes of the disease and the subsequent design of the first barrier to test potential therapeutics. On the other hand, in vivo models are anatomically more similar to humans allowing to reproduce the pattern and progression of the lesion in a controlled scene and offering the opportunity to study the symptoms and responses to new treatments. Moreover, in vivo models are the most suitable preclinical model, being a fundamental and a mandatory step to ensure the successful transfer to clinical trials. Both in vitro and in vitro models have a number of advantages and limitation, and the choice of the most appropriate model for each study depends on many factors, such as the purpose of the study, handling or the ease to obtain, and cost, among others. In this chapter, we present the main in vitro and in vivo OC disease models that have been used over the years in the study of origin, progress, and treatment approaches of OC defects.


Assuntos
Doenças Ósseas , Doenças das Cartilagens , Modelos Animais , Animais , Animais Geneticamente Modificados , Doenças Ósseas/etiologia , Doenças Ósseas/genética , Doenças Ósseas/terapia , Doenças das Cartilagens/induzido quimicamente , Doenças das Cartilagens/etiologia , Doenças das Cartilagens/genética , Doenças das Cartilagens/terapia , Técnicas de Cultura de Células , Condrócitos/citologia , Condrogênese , Técnicas de Cocultura , Modelos Animais de Doenças , Humanos , Traumatismos do Joelho/etiologia , Mamíferos , Técnicas de Cultura de Órgãos , Osteoartrite/etiologia , Osteoartrite/genética , Osteoartrite/patologia , Osteoartrite/terapia , Osteogênese , Engenharia Tecidual/métodos , Alicerces Teciduais
17.
Cytotherapy ; 16(9): 1229-37, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24969968

RESUMO

BACKGROUND AIMS: Endothelial progenitor cells (EPCs) are known to play a beneficial role by promoting postnatal vasculogenesis in pathological events, such as ischemic heart disease and peripheral artery disease. However, little is known about the potential of EPCs to restore heart damage tissue. We compared the cardiac differentiation capacity of EPCs isolated from peripheral blood of patients with acute myocardial infarction (AMI) with EPCs obtained from umbilical cord blood (UCB). METHODS: EPCs from both origins were isolated by density gradient centrifugation and characterized through the use of endothelial markers (UEA-1lectin, CD133 and KDR) and endothelial cell colony-forming unit assay. Cardiac differentiation capacity of EPCs was assessed by immunofluorescence and reverse transcriptase-polymerase chain reaction after 5-azacytidine (5-aza) induction. RESULTS: No significant differences were observed between the number of endothelial cell colony-forming units in peripheral blood of patients with AMI and samples from UCB. Moreover, 5-aza induced the appearance of myotube-like structures and the positive expression of sarcomeric α-actinin, cardiac troponin I and T and desmin in a similar pattern for both cell sources, which indicates a comparable acquisition of a cardiac-like phenotype. CONCLUSIONS: For the first time, we have compared, in vitro, the cardiomyogenic potential of EPCs derived from patients with AMI with UCB-derived EPCs. Our data indicate that EPCs obtained from both origins have similar plasticity and functions and suggest a potential therapeutic efficacy in cardiac cell therapy.


Assuntos
Células Sanguíneas/patologia , Células Progenitoras Endoteliais/fisiologia , Endotélio Vascular/fisiologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/fisiologia , Doença Aguda , Adulto , Idoso , Azacitidina/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Feminino , Regeneração Tecidual Guiada/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/patologia , Cordão Umbilical/citologia
18.
Expert Rev Clin Pharmacol ; 17(4): 323-347, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413373

RESUMO

INTRODUCTION: Treatment resistance poses a significant obstacle in oncology, especially in biliary tract cancer (BTC) and pancreatic cancer (PC). Current therapeutic options include chemotherapy, targeted therapy, and immunotherapy. Resistance to these treatments may arise due to diverse molecular mechanisms, such as genetic and epigenetic modifications, altered drug metabolism and efflux, and changes in the tumor microenvironment. Identifying and overcoming these mechanisms is a major focus of research: strategies being explored include combination therapies, modulation of the tumor microenvironment, and personalized approaches. AREAS COVERED: We provide a current overview and discussion of the most relevant mechanisms of resistance to chemotherapy, target therapy, and immunotherapy in both BTC and PC. Furthermore, we compare the different strategies that are being implemented to overcome these obstacles. EXPERT OPINION: So far there is no unified theory on drug resistance and progress is limited. To overcome this issue, individualized patient approaches, possibly through liquid biopsies or single-cell transcriptome studies, are suggested, along with the potential use of artificial intelligence, to guide effective treatment strategies. Furthermore, we provide insights into what we consider the most promising areas of research, and we speculate on the future of managing treatment resistance to improve patient outcomes.


Assuntos
Neoplasias do Sistema Biliar , Neoplasias Pancreáticas , Farmacologia Clínica , Humanos , Inteligência Artificial , Neoplasias do Sistema Biliar/tratamento farmacológico , Neoplasias do Sistema Biliar/genética , Neoplasias do Sistema Biliar/patologia , Imunoterapia , Terapia Combinada , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Terapia de Alvo Molecular , Microambiente Tumoral
19.
J Hematol Oncol ; 17(1): 44, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38863020

RESUMO

Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.


Assuntos
Imunoterapia , Neoplasias , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Microambiente Tumoral/imunologia , Imunoterapia/métodos , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/patologia , Macrófagos Associados a Tumor/imunologia , Medicina de Precisão , Macrófagos/imunologia , Animais
20.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727378

RESUMO

The recent description of well-defined molecular subtypes of breast cancer has led to the clinical development of a number of successful molecular targets. Particularly, triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with historically poor outcomes, mainly due to the lack of effective targeted therapies. Recent progresses in materials science have demonstrated the impressive properties of metal-organic framework nanoparticles (NPs) as antitumoral drug delivery systems. Here, in a way to achieve efficient bio-interfaces with cancer cells and improve their internalization, benchmarked MIL-100(Fe) NPs were coated with cell membranes (CMs) derived from the human TNBC cell line MDA-MB-468. The prepared CMs-coated metal-organic framework (CMs_MIL-100(Fe)) showed enhanced colloidal stability, cellular uptake, and cytotoxicity in MDA-MB-468 cells compared to non-coated NPs, paving the way for these human CMs-coated MIL-100(Fe) NPs as effective targeted therapies against the challenging TNBC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA