Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuropharmacology ; 126: 128-141, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28844596

RESUMO

Alzheimer's disease (AD) is the main cause of dementia and a major health issue worldwide. The complexity of the pathology continues to challenge its comprehension and the implementation of effective treatments. In the last decade, a number of possible targets of intervention have been pointed out, among which the stimulation of 5-HT4 receptors (5-HT4Rs) seems very promising. 5-HT4R agonists exert pro-cognitive effects, inhibit amyloid-ß peptide (Aß) production and therefore directly and positively impact AD progression. In the present work, we investigated the effects of RS 67333, a partial 5-HT4R agonist, after chronic administration in the 5xFAD mouse model of AD. 5xFAD male mice and their wild type (WT) male littermates received either RS 67333 or vehicle solution i.p., twice a week, for 2 or 4 months. Cognitive performance was evaluated in a hippocampal-dependent behavioral task, the olfactory tubing maze (OTM). Mice were then sacrificed to evaluate the metabolism of the amyloid precursor protein (APP), amyloidosis and neuroinflammatory processes. No beneficial effects of RS 67333 were observed in 5xFAD mice after 2 months of treatment, while 5xFAD mice treated for 4 months showed better cognitive abilities compared to vehicle-treated 5xFAD mice. The beneficial effects of RS 67333 on learning and memory correlated with the decrease in both amyloid plaque load and neuroinflammation, more specifically in the entorhinal cortex. The most significant improvements in learning and memory and reduction of pathology stigmata were observed after the 4-month administration of RS 67333, demonstrating that treatment duration is important to alleviate amyloidosis and glial reactivity, particularly in the entorhinal cortex. These results confirm the 5-HT4R as a promising target for AD pathogenesis and highlight the need for further investigations to characterize fully the underlying mechanisms of action.


Assuntos
Doença de Alzheimer/prevenção & controle , Precursor de Proteína beta-Amiloide/metabolismo , Compostos de Anilina/administração & dosagem , Córtex Entorrinal/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Piperidinas/administração & dosagem , Agonistas do Receptor 5-HT4 de Serotonina/administração & dosagem , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Encefalite/metabolismo , Encefalite/prevenção & controle , Córtex Entorrinal/metabolismo , Córtex Entorrinal/patologia , Masculino , Camundongos Transgênicos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/prevenção & controle
2.
Front Aging Neurosci ; 5: 96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24399967

RESUMO

Amyloid ß (Aß) accumulation is considered the main culprit in the pathogenesis of Alzheimer's disease (AD). Recent studies suggest that decreasing Aß production at very early stages of AD could be a promising strategy to slow down disease progression. Serotonin 5-HT4 receptor activation stimulates α-cleavage of the amyloid precursor protein (APP), leading to the release of the soluble and neurotrophic sAPPα fragment and thus precluding Aß formation. Using the 5XFAD mouse model of AD that shows accelerated Aß deposition, we investigated the effect of chronic treatments (treatment onset at different ages and different durations) with the 5-HT4 receptor agonist RS 67333 during the asymptomatic phase of the disease. Chronic administration of RS 67333 decreased concomitantly the number of amyloid plaques and the level of Aß species. Reduction of Aß levels was accompanied by a striking decrease in hippocampal astrogliosis and microgliosis. RS 67333 also transiently increased sAPPα concentration in the cerebrospinal fluid and brain. Moreover, a specific 5-HT4 receptor antagonist (RS 39604) prevented the RS 67333-mediated reduction of the amyloid pathology. Finally, the novel object recognition test deficits of 5XFAD mice were reversed by chronic treatment with RS 67333. Collectively, these results strongly highlight this 5-HT4 receptor agonist as a promising disease modifying-agent for AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA