Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Angew Chem Int Ed Engl ; 63(26): e202404955, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38639173

RESUMO

A combined computational and experimental approach allowed us to develop overall the most selective catalyst for the direct hydrogenation of N-methyl, N-alkyl and N-aryl imines described to date. Iridium catalysts with a cyclometallated cyclic imide group provide selectivity of up to 99 % enantiomeric excess. Computational studies show that the selectivity results from the combined effect of H-bonding of the imide C=O with the substrate iminium ion and a stabilizing π-π interaction with the cyclometallated ligand. The cyclometallated ligand thus exhibits a unique mode of action, serving as a template for the H-bond directed approach of the substrate which results in enhanced selectivity. The catalyst (2) has been synthesized and isolated as a crystalline air-stable solid. X-ray analysis of 2 confirmed the structure of the catalyst and the correct position of the imide C=O groups to engage in an H-bond with the substrate. 19F NMR real-time monitoring showed the hydrogenation of N-methyl imines catalyzed by 2 is very fast, with a TOF of approx. 3500 h-1.

2.
Anal Chem ; 95(49): 17997-18005, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38047582

RESUMO

We demonstrate that enzyme-catalyzed reactions can be observed in zero- and low-field NMR experiments by combining recent advances in parahydrogen-based hyperpolarization methods with state-of-the-art magnetometry. Specifically, we investigated two model biological processes: the conversion of fumarate into malate, which is used in vivo as a marker of cell necrosis, and the conversion of pyruvate into lactate, which is the most widely studied metabolic process in hyperpolarization-enhanced imaging. In addition to this, we constructed a microfluidic zero-field NMR setup to perform experiments on microliter-scale samples of [1-13C]fumarate in a lab-on-a-chip device. Zero- to ultralow-field (ZULF) NMR has two key advantages over high-field NMR: the signals can pass through conductive materials (e.g., metals), and line broadening from sample heterogeneity is negligible. To date, the use of ZULF NMR for process monitoring has been limited to studying hydrogenation reactions. In this work, we demonstrate this emerging analytical technique for more general reaction monitoring and compare zero- vs low-field detection.


Assuntos
Imageamento por Ressonância Magnética , Ácido Pirúvico , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Hidrogenação , Ácido Pirúvico/metabolismo , Fumaratos
3.
NMR Biomed ; 35(9): e4745, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35435283

RESUMO

Liver fibrosis staging is a key element driving the prognosis of patients with chronic liver disease. Currently, biopsy is the only technique capable of diagnosing liver fibrosis in patients with alcohol-related liver disease (ArLD) and nonalcoholic fatty liver disease (NAFLD) unequivocally. Noninvasive (e.g. plasma-based) biomarker assays are attractive tools to diagnose and stage disease, yet must prove that they are reliable and sensitive to be used clinically. Here, we demonstrate proton nuclear magnetic resonance as a method to rapidly quantify the endogenous concentration of ammonium ions from human plasma extracts and show their ability to report upon early and advanced stages of ArLD and NAFLD. We show that, irrespective of the disease etiology, ammonium concentration is a more robust and informative marker of fibrosis stage than current clinically assessed blood hepatic biomarkers. Subject to validation in larger cohorts, the study indicates that the method can provide accurate and rapid staging of ArLD and NAFLD without the need for an invasive biopsy.


Assuntos
Compostos de Amônio , Técnicas de Imagem por Elasticidade , Hepatopatia Gordurosa não Alcoólica , Biomarcadores , Biópsia , Técnicas de Imagem por Elasticidade/métodos , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Cirrose Hepática/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Prótons
4.
Angew Chem Int Ed Engl ; 61(2): e202112982, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34679201

RESUMO

Hyperpolarized (HP) 13 C magnetic resonance enables non-invasive probing of metabolism in vivo. To date, only 13 C-molecules hyperpolarized with persistent trityl radicals have been injected in humans. We show here that the free radical photo-induced in alpha-ketoglutaric acid (α-KG) can be used to hyperpolarize photo-inactive 13 C-molecules such as [1-13 C]lactate. α-KG is an endogenous molecule with an exceptionally high radical yield under photo-irradiation, up to 50 %, and its breakdown product, succinic acid, is also endogenous. This radical precursor therefore exhibits an excellent safety profile for translation to human studies. The labile nature of the radical means that no filtration is required prior to injection while also offering the opportunity to extend the 13 C relaxation time in frozen HP 13 C-molecules for storage and transport. The potential for in vivo metabolic studies is demonstrated in the rat liver following the injection of a physiological dose of HP [1-13 C]lactate.


Assuntos
Ácidos Cetoglutáricos
5.
MAGMA ; 34(1): 49-56, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32910316

RESUMO

OBJECTIVES: To enhance detection of the products of hyperpolarized [2-13C]dihydroxyacetone metabolism for assessment of three metabolic pathways in the liver in vivo. Hyperpolarized [2-13C]DHAc emerged as a promising substrate to follow gluconeogenesis, glycolysis and the glycerol pathways. However, the use of [2-13C]DHAc in vivo has not taken off because (i) the chemical shift range of [2-13C]DHAc and its metabolic products span over 144 ppm, and (ii) 1H decoupling is required to increase spectral resolution and sensitivity. While these issues are trivial for high-field vertical-bore NMR spectrometers, horizontal-bore small-animal MR scanners are seldom equipped for such experiments. METHODS: Real-time hepatic metabolism of three fed mice was probed by 1H-decoupled 13C-MR following injection of hyperpolarized [2-13C]DHAc. The spectra of [2-13C]DHAc and its metabolic products were acquired in a 7 T small-animal MR scanner using three purpose-designed spectral-spatial radiofrequency pulses that excited a spatial bandwidth of 8 mm with varying spectral bandwidths and central frequencies (chemical shifts). RESULTS: The metabolic products detected in vivo include glycerol 3-phosphate, glycerol, phosphoenolpyruvate, lactate, alanine, glyceraldehyde 3-phosphate and glucose 6-phosphate. The metabolite-to-substrate ratios were comparable to those reported previously in perfused liver. DISCUSSION: Three metabolic pathways can be probed simultaneously in the mouse liver in vivo, in real time,  using hyperpolarized DHAc.


Assuntos
Di-Hidroxiacetona/química , Animais , Isótopos de Carbono , Gluconeogênese , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Camundongos , Prótons
6.
NMR Biomed ; 33(5): e4264, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31999867

RESUMO

Dynamic nuclear polarization (DNP) provides the opportunity to boost liquid state magnetic resonance (MR) signals from selected nuclear spins by several orders of magnitude. A cryostat running at a temperature of ~ 1 K and a superconducting magnet set to between 3 and 10 T are required to efficiently hyperpolarize nuclear spins. Several DNP polarizers have been implemented for the purpose of hyperpolarized MR and recent systems have been designed to avoid the need for user input of liquid cryogens. We herein present a zero boil-off DNP polarizer that operates at 1.35 ± 0.01 K and 7 T, and which can polarize two samples in parallel. The samples are cooled by a static helium bath thermally connected to a 1 K closed-cycle 4 He refrigerator. Using a modified version of the commercial fluid path developed for the SPINlab polarizer, we demonstrate that, within a 12-minute interval, the system can produce two separate hyperpolarized 13 C solutions. The 13 C liquid-state polarization of [1-13 C]pyruvate measured 26 seconds after dissolution was 36%, which can be extrapolated to a 55% solid state polarization. The system is well adapted for in vitro and in vivo preclinical hyperpolarized MR experiments and it can be modified to polarize up to four samples in parallel.


Assuntos
Imageamento por Ressonância Magnética , Isótopos de Carbono , Micro-Ondas , Ácido Pirúvico/química , Reologia , Temperatura
7.
Angew Chem Int Ed Engl ; 58(5): 1334-1339, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30515929

RESUMO

Free radicals generated by UV-light irradiation of a frozen solution containing a fraction of pyruvic acid (PA) have demonstrated their dissolution dynamic nuclear polarization (dDNP) potential, providing up to 30 % [1-13 C]PA liquid-state polarization. Moreover, their labile nature has proven to pave a way to nuclear polarization storage and transport. Herein, differently from the case of PA, the issue of providing dDNP UV-radical precursors (trimethylpyruvic acid and its methyl-deuterated form) not involved in any metabolic pathway was investigated. The 13 C dDNP performance was evaluated for hyperpolarization of [U-13 C6 ,1,2,3,4,5,6,6-d7 ]-d-glucose. The generated UV-radicals proved to be versatile and highly efficient polarizing agents, providing, after dissolution and transfer (10 s), a 13 C liquid-state polarization of up to 32 %.

8.
J Biol Chem ; 292(5): 1737-1748, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27994059

RESUMO

Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-13C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive 13C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-13C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using 13C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-13C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic.


Assuntos
Ácido Desidroascórbico/metabolismo , NADP/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo , Animais , Isótopos de Carbono , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Camundongos
9.
J Am Chem Soc ; 140(43): 14455-14463, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30346733

RESUMO

Whether for 13C magnetic resonance studies in chemistry, biochemistry, or biomedicine, hyperpolarization methods based on dynamic nuclear polarization (DNP) have become ubiquitous. DNP requires a source of unpaired electrons, which are commonly added to the sample to be hyperpolarized in the form of stable free radicals. Once polarized, the presence of these radicals is unwanted. These radicals can be replaced by nonpersistent radicals created by the photoirradiation of pyruvic acid (PA), which are annihilated upon dissolution or thermalization in the solid state. However, since PA is readily metabolized by most cells, its presence may be undesirable for some metabolic studies. In addition, some 13C substrates are photosensitive and therefore may degrade during the photogeneration of a PA radical, which requires ultraviolet (UV) light. We show here that the photoirradiation of phenylglyoxylic acid (PhGA) using visible light produces a nonpersistent radical that, in principle, can be used to hyperpolarize any molecule. We compare radical yields in samples containing PA and PhGA upon photoirradiation with broadband and narrowband UV-visible light sources. To demonstrate the suitability of PhGA as a radical precursor for DNP, we polarized the gluconeogenic probe 13C-dihydroxyacetone, which is UV-sensitive, using a commercial 3.35 T DNP polarizer and then injected this into a mouse and followed its metabolism in vivo.

10.
Magn Reson Med ; 79(4): 1862-1869, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29314217

RESUMO

PURPOSE: The purpose of this study was to investigate the hyperpolarized ketone body 13 C-acetoacetate (AcAc) and its conversion to 13 C-ß-hydroxybutyrate (ßOHB) in vivo, catalyzed by ß-hydroxybutyrate dehydrogenase (BDH), as a novel direct marker of mitochondrial redox state. METHODS: [1,3-13 C2 ]AcAc was synthesized by hydrolysis of the ethyl ester, and hyperpolarized via dissolution DNP. Cold storage under basic conditions resulted in sufficient chemical stability for use in hyperpolarized (HP) MRI studies. Polarizations and relaxation times of HP [1,3-13 C2 ]AcAc were measured in a clinical 3T MRI scanner, and 8 rats were scanned by dynamic HP 13 C MR spectroscopy of a slab through the kidneys. Four rats were scanned after acute treatment with high dose metformin (125 mg/kg, intravenous), which is known to modulate mitochondrial redox via inhibition of mitochondrial complex I. An additional metformin-treated rat was scanned by abdominal 2D CSI (8 mm × 8 mm). RESULTS: Polarizations of 7 ± 1% and 7 ± 3%, and T1 relaxation times of 58 ± 5 s and 52 ± 3 s, were attained at the C1 and C3 positions, respectively. Rapid conversion of HP AcAc to ßOHB was detected in rat kidney in vivo, via the C1 label. The product HP ßOHB was resolved from closely resonating acetate. Conversion to ßOHB was also detected via 2D CSI, in both kidney as well as liver regions. Metformin treatment resulted in a significant increase (40%, P = 0.01) of conversion of HP AcAc to ßOHB. CONCLUSION: Rapid conversion of HP AcAc to ßOHB was observed in rat kidney in vivo and is a promising new non-invasive marker of mitochondrial redox state. Magn Reson Med 79:1862-1869, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Ácido 3-Hidroxibutírico/química , Acetoacetatos/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Rim/diagnóstico por imagem , Fígado/diagnóstico por imagem , Mitocôndrias/metabolismo , Animais , Isótopos de Carbono/química , Catálise , Cetonas/química , Ácido Láctico/química , Imageamento por Ressonância Magnética , Metformina/química , Oxirredução , Ácido Pirúvico/química , Ratos , Ratos Sprague-Dawley
11.
Magn Reson Med ; 80(1): 36-41, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29193287

RESUMO

PURPOSE: Although 1 H spin coupling is generally avoided in probes for hyperpolarized (HP) 13 C MRI, enzymatic transformations of biological interest can introduce large 13 C-1 H couplings in vivo. The purpose of this study was to develop and investigate the application of 1 H decoupling for enhancing the sensitivity for detection of affected HP 13 C metabolic products. METHODS: A standalone 1 H decoupler system and custom concentric 13 C/1 H paddle coil setup were integrated with a clinical 3T MRI scanner for in vivo 13 C MR studies using HP [2-13 C]dihydroxyacetone, a novel sensor of hepatic energy status. Major 13 C-1 H coupling JCH = ∼150 Hz) is introduced after adenosine triphosphate-dependent enzymatic transformation of HP [2-13 C]dihydroxyacetone to [2-13 C]glycerol-3-phosphate in vivo. Application of WALTZ-16 1 H decoupling for elimination of large 13 C-1 H couplings was first tested in thermally polarized glycerol phantoms and then for in vivo HP MR studies in three rats, scanned both with and without decoupling. RESULTS: As configured, 1 H-decoupled 13 C MR of thermally polarized glycerol and the HP metabolic product [2-13 C]glycerol-3-phosphate was achieved at forward power of approximately 15 W. High-quality 3-s dynamic in vivo HP 13 C MR scans were acquired with decoupling duty cycle of 5%. Application of 1 H decoupling resulted in sensitivity enhancement of 1.7-fold for detection of metabolic conversion of [2-13 C]dihydroxyacetone to HP [2-13 C]glycerol-3-phosphate in vivo. CONCLUSIONS: Application of 1 H decoupling provides significant sensitivity enhancement for detection of HP 13 C metabolic products with large 1 H spin couplings, and is therefore expected to be useful for preclinical and potentially clinical HP 13 C MR studies. Magn Reson Med 80:36-41, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Isótopos de Carbono/química , Imageamento por Ressonância Magnética , Prótons , Animais , Temperatura Corporal , Meios de Contraste/química , Di-Hidroxiacetona/metabolismo , Glicerol/química , Processamento de Imagem Assistida por Computador , Fígado/diagnóstico por imagem , Hepatopatias/diagnóstico por imagem , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Imagens de Fantasmas , Ácido Pirúvico/química , Ondas de Rádio , Ratos
12.
J Magn Reson Imaging ; 47(1): 141-151, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419644

RESUMO

PURPOSE: To compare the apparent diffusion coefficient (ADC) of hyperpolarized (HP) [13 C,15 N]urea to the ADC of endogenous water in healthy and fibrotic mouse liver. MATERIALS AND METHODS: ADC measurements for water and [13 C]urea were made in agarose phantoms at 14.1T. Next, the ADC of water and injected HP [13 C,15 N]urea were measured in eight CD1 mouse livers before and after induction of liver fibrosis using CCl4 . Liver fibrosis was quantified pathologically using the modified Brunt fibrosis score and compared to the measured ADC of water and urea. RESULTS: In cell-free phantoms with 12.5% agarose, water ADC was nearly twice the ADC of urea (1.93 × 10-3 mm2 /s vs. 1.00 × 10-3 mm2 /s). The mean ADC values of water and [13 C,15 N]urea in healthy mouse liver (±SD) were nearly identical [(0.75 ± 0.11) × 10-3 mm2 /s and (0.75 ± 0.22) × 10-3 mm2 /s, respectively]. Mean water and [13 C,15 N]urea ADC values in fibrotic liver (±SD) were (0.84 ± 0.22) × 10-3 mm2 /s and (0.75 ± 0.15) × 10-3 mm2 /s, respectively. Neither water nor urea ADCs were statistically different in the fibrotic livers compared to baseline (P = 0.14 and P = 0.99, respectively). Water and urea ADCs were positively correlated at baseline (R2 = 0.52 and P = 0.045) but not in fibrotic livers (R2 = 0.23 and P = 0.23). CONCLUSION: ADC of injected hyperpolarized urea in healthy liver reflects a smaller change as compared to free solution than ADC of water. This may reflect differences in cellular compartmentalization of the two compounds. No significant change in ADC of either water or urea were observed in relatively mild stages of liver fibrosis. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:141-151.


Assuntos
Imagem de Difusão por Ressonância Magnética , Cirrose Hepática/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Animais , Isótopos de Carbono/química , Sistema Livre de Células , Masculino , Camundongos , Reprodutibilidade dos Testes , Sefarose/química , Ureia/química , Água/química
13.
Magn Reson Med ; 78(3): 1087-1092, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27735082

RESUMO

PURPOSE: The purpose of this work was to explore the impact of slice profile effects on apparent diffusion coefficient (ADC) mapping of hyperpolarized (HP) substrates. METHODS: Slice profile effects were simulated using a Gaussian radiofrequency (RF) pulse with a variety of flip angle schedules and b-value ordering schemes. A long T1 water phantom was used to validate the simulation results, and ADC mapping of HP [13 C,15 N2 ]urea was performed on the murine liver to assess these effects in vivo. RESULTS: Slice profile effects result in excess signal after repeated RF pulses, causing bias in HP measurements. The largest error occurs for metabolites with small ADCs, resulting in up to 10-fold overestimation for metabolites that are in more-restricted environments. A mixed b-value scheme substantially reduces this bias, whereas scaling the slice-select gradient can mitigate it completely. In vivo, the liver ADC of hyperpolarized [13 C,15 N2 ]urea is nearly 70% lower (0.99 ± 0.22 vs 1.69 ± 0.21 × 10-3 mm2 /s) when slice-select gradient scaling is used. CONCLUSION: Slice profile effects can lead to bias in HP ADC measurements. A mixed b-value ordering scheme can reduce this bias compared to sequential b-value ordering. Slice-select gradient scaling can also correct for this deviation, minimizing bias and providing more-precise ADC measurements of HP substrates. Magn Reson Med 78:1087-1092, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Animais , Simulação por Computador , Fígado/diagnóstico por imagem , Camundongos , Imagens de Fantasmas
14.
Magn Reson Med ; 77(6): 2356-2363, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27298073

RESUMO

PURPOSE: Hyperpolarized 13 C MRI is a powerful tool for studying metabolism, but can lack tissue specificity. Gadoxetate is a gadolinium-based MRI contrast agent that is selectively taken into hepatocytes. The goal of this project was to investigate whether gadoxetate can be used to selectively suppress the hyperpolarized signal arising from hepatocytes, which could in future studies be applied to generate specificity for signal from abnormal cell types. METHODS: Baseline gadoxetate uptake kinetics were measured using T1 -weighted contrast enhanced imaging. Relaxivity of gadoxetate was measured for [1-13 C]pyruvate, [1-13 C]lactate, and [1-13 C]alanine. Four healthy rats were imaged with hyperpolarized [1-13 C]pyruvate using a three-dimensional (3D) MRSI sequence prior to and 15 min following administration of gadoxetate. The lactate:pyruvate ratio and alanine:pyruvate ratios were measured in liver and kidney. RESULTS: Overall, the hyperpolarized signal decreased approximately 60% as a result of pre-injection of gadoxetate. In liver, the lactate:pyruvate and alanine:pyruvate ratios decreased 42% and 78%, respectively (P < 0.05) following gadoxetate administration. In kidneys, these ratios did not change significantly. Relaxivity of gadoxetate for [1-13 C]alanine was 12.6 times higher than relaxivity of gadoxetate for [1-13 C]pyruvate, explaining the greater selective relaxation effect on alanine. CONCLUSIONS: The liver-specific gadolinium contrast-agent gadoxetate can selectively suppress normal hepatocyte contributions to hyperpolarized 13 C MRI signals. Magn Reson Med 77:2356-2363, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Isótopos de Carbono/farmacocinética , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Gadolínio DTPA/farmacocinética , Hepatócitos/metabolismo , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Animais , Isótopos de Carbono/administração & dosagem , Combinação de Medicamentos , Gadolínio DTPA/administração & dosagem , Hepatócitos/citologia , Fígado/diagnóstico por imagem , Fígado/metabolismo , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Magn Reson Med ; 77(4): 1419-1428, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27017966

RESUMO

PURPOSE: To develop a specialized multislice, single-acquisition approach to detect the metabolites of hyperpolarized (HP) [2-13 C]dihydroxyacetone (DHAc) to probe gluconeogenesis in vivo, which have a broad 144 ppm spectral range (∼4.6 kHz at 3T). A novel multiband radio-frequency (RF) excitation pulse was designed for independent flip angle control over five to six spectral-spatial (SPSP) excitation bands, each corrected for chemical shift misregistration effects. METHODS: Specialized multiband SPSP RF pulses were designed, tested, and applied to investigate HP [2-13 C]DHAc metabolism in kidney and liver of fasted rats with dynamic 13 C-MR spectroscopy and an optimal flip angle scheme. For comparison, experiments were also performed with narrow-band slice-selective RF pulses and a sequential change of the frequency offset to cover the five frequency bands of interest. RESULTS: The SPSP pulses provided a controllable spectral profile free of baseline distortion with improved signal to noise of the metabolite peaks, allowing for quantification of the metabolic products. We observed organ-specific differences in DHAc metabolism. There was two to five times more [2-13 C]phosphoenolpyruvate and about 19 times more [2-13 C]glycerol 3-phosphate in the liver than in the kidney. CONCLUSION: A multiband SPSP RF pulse covering a spectral range over 144 ppm enabled in vivo characterization of HP [2-13 C]DHAc metabolism in rat liver and kidney. Magn Reson Med 77:1419-1428, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Di-Hidroxiacetona/metabolismo , Glucose/biossíntese , Rim/metabolismo , Fígado/metabolismo , Processamento de Sinais Assistido por Computador , Animais , Gluconeogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Magn Reson Med ; 77(1): 65-73, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27859575

RESUMO

PURPOSE: To investigate acute changes in glucose metabolism in liver and kidneys in vivo after a bolus injection of either fructose or glucose, using hyperpolarized [2-13 C]dihydroxyacetone. METHODS: Spatially registered, dynamic, multislice MR spectroscopy was acquired for the metabolic products of [2-13 C]dihydroxyacetone in liver and kidneys. Metabolism was probed in 13 fasted rats at three time points: 0, 70, and 140 min. At 60 min, rats were injected intravenously with fructose (n = 5) or glucose (n = 4) at 0.8 g/kg to initiate acute response. Controls (n = 4) did not receive a carbohydrate challenge. RESULTS: Ten minutes after fructose infusion, levels of [2-13 C]phosphoenolpyruvate and [2-13 C]glycerol-3-phosphate halved in liver: 51% (P = 0.0010) and 47% (P = 0.0001) of baseline, respectively. Seventy minutes later, levels returned to baseline. The glucose challenge did not alter the signals significantly, nor did repeated administration of the dihydroxyacetone imaging bolus. In kidneys, no statistically significant changes were detected after sugar infusion other than a 20% increase of the glycerol-3-phosphate signal between 10 and 80 min after fructose injection (P = 0.0028). CONCLUSION: Hyperpolarized [2-13 C]dihydroxyacetone detects a real-time, transient metabolic response of the liver to an acute fructose challenge. Observed effects possibly include ATP depletion and changes in the unlabeled pool sizes of glycolytic intermediates. Magn Reson Med 77:65-73, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Isótopos de Carbono/metabolismo , Di-Hidroxiacetona/metabolismo , Frutose/metabolismo , Glucose/metabolismo , Rim/metabolismo , Fígado/metabolismo , Animais , Glicemia/metabolismo , Isótopos de Carbono/química , Di-Hidroxiacetona/química , Frutose/análise , Frutose/química , Glucose/análise , Glucose/química , Processamento de Imagem Assistida por Computador , Rim/química , Rim/diagnóstico por imagem , Fígado/química , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ratos , Ratos Sprague-Dawley
17.
Magn Reson Med ; 78(3): 963-975, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27770458

RESUMO

PURPOSE: Balanced steady-state free precession (bSSFP) sequences can provide superior signal-to-noise ratio efficiency for hyperpolarized (HP) carbon-13 (13 C) magnetic resonance imaging by efficiently utilizing the nonrecoverable magnetization, but managing their spectral response is challenging in the context of metabolic imaging. A new spectrally selective bSSFP sequence was developed for fast imaging of multiple HP 13 C metabolites with high spatiotemporal resolution. THEORY AND METHODS: This novel approach for bSSFP spectral selectivity incorporates optimized short-duration spectrally selective radiofrequency pulses within a bSSFP pulse train and a carefully chosen repetition time to avoid banding artifacts. RESULTS: The sequence enabled subsecond 3D dynamic spectrally selective imaging of 13 C metabolites of copolarized [1-13 C]pyruvate and [13 C]urea at 2-mm isotropic resolution, with excellent spectral selectivity (∼100:1). The sequence was successfully tested in phantom studies and in vivo studies with normal mice. CONCLUSION: This sequence is expected to benefit applications requiring dynamic volumetric imaging of metabolically active 13 C compounds at high spatiotemporal resolution, including preclinical studies at high field and, potentially, clinical studies. Magn Reson Med 78:963-975, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Isótopos de Carbono/metabolismo , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Artefatos , Isótopos de Carbono/análise , Isótopos de Carbono/química , Simulação por Computador , Lactatos/análise , Lactatos/química , Lactatos/metabolismo , Camundongos , Imagens de Fantasmas , Ácido Pirúvico/análise , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo
18.
Magn Reson Med ; 77(4): 1429-1437, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27098724

RESUMO

PURPOSE: The purpose of this study was to characterize tissue-specific alterations in metabolism of hyperpolarized (HP) gluconeogenic precursors 13 C-lactate and 13 C-pyruvate by rat liver and kidneys under conditions of fasting or insulin-deprived diabetes. METHODS: Seven normal rats were studied by MR spectroscopic imaging of both HP 13 C-lactate and 13 C-pyruvate in both normal fed and 24 h fasting states, and seven additional rats were scanned after induction of diabetes by streptozotocin (STZ) with insulin withdrawal. Phosphoenolpyruvate carboxykinase (PEPCK) expression levels were also measured in liver and kidney tissues of the STZ-treated rats. RESULTS: Multiple sets of significant signal modulations were detected, with graded intensity in general between fasting and diabetic states. An approximate two-fold reduction in the ratio of 13 C-bicarbonate to total 13 C signal was observed in both organs in fasting. The ratio of HP lactate-to-alanine was markedly altered, ranging from a liver-specific 54% increase in fasting, to increases of 69% and 92% in liver and kidney, respectively, in diabetes. Diabetes resulted in a 40% increase in renal lactate signal. STZ resulted in 5.86-fold and 2.73-fold increases in PEPCK expression in liver and kidney, respectively. CONCLUSION: MRI of HP 13 C gluconeogenic precursors may advance diabetes research by clarifying organ-specific roles in abnormal diabetic metabolism. Magn Reson Med 77:1429-1437, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Gluconeogênese/fisiologia , Glucose/biossíntese , Rim/metabolismo , Ácido Láctico/metabolismo , Fígado/metabolismo , Ácido Pirúvico/metabolismo , Animais , Masculino , Taxa de Depuração Metabólica , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Magn Reson Med ; 76(2): 369-79, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27228088

RESUMO

PURPOSE: To develop a compressed sensing (CS) acceleration method with a high spectral bandwidth exploiting the spatial-spectral sparsity of MR spectroscopic imaging (MRSI). METHODS: Accelerations were achieved using blip gradients during the readout to perform nonoverlapped and stochastically delayed random walks in kx -ky -t space, combined with block-Hankel matrix completion for efficient reconstruction. Both retrospective and prospective CS accelerations were applied to (13) C MRSI experiments, including in vivo rodent brain and liver studies with administrations of hyperpolarized [1-(13) C] pyruvate at 7.0 Tesla (T) and [2-(13) C] dihydroxyacetone at 3.0 T, respectively. RESULTS: In retrospective undersampling experiments using in vivo 7.0 T data, the proposed method preserved spectral, spatial, and dynamic fidelities with R(2) ≥ 0.96 and ≥ 0.87 for pyruvate and lactate signals, respectively, 750-Hz spectral separation, and up to 6.6-fold accelerations. In prospective in vivo experiments, with 3.8-fold acceleration, the proposed method exhibited excellent spatial localization of metabolites and peak recovery for pyruvate and lactate at 7.0 T as well as for dihydroxyacetone and its metabolic products with a 4.5-kHz spectral span (140 ppm at 3.0 T). CONCLUSIONS: This study demonstrated the feasibility of a new CS approach to accelerate high spectral bandwidth MRSI experiments. Magn Reson Med 76:369-379, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Algoritmos , Química Encefálica , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Compressão de Dados/métodos , Fígado/química , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Animais , Camundongos , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Magn Reson Med ; 76(2): 391-401, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26388418

RESUMO

PURPOSE: Dissolution dynamic nuclear polarization can increase the sensitivity of the (13) C magnetic resonance spectroscopy experiment by at least four orders of magnitude and offers a novel approach to the development of MRI gene reporters based on enzymes that metabolize (13) C-labeled tracers. We describe here a gene reporter based on the enzyme pyruvate decarboxylase (EC 4.1.1.1), which catalyzes the decarboxylation of pyruvate to produce acetaldehyde and carbon dioxide. METHODS: Pyruvate decarboxylase from Zymomonas mobilis (zmPDC) and a mutant that lacked enzyme activity were expressed using an inducible promoter in human embryonic kidney (HEK293T) cells. Enzyme activity was measured in the cells and in xenografts derived from the cells using (13) C MRS measurements of the conversion of hyperpolarized [1-(13) C] pyruvate to H(13) CO3-. RESULTS: Induction of zmPDC expression in the cells and in the xenografts derived from them resulted in an approximately two-fold increase in the H(13) CO3-/[1-(13) C] pyruvate signal ratio following intravenous injection of hyperpolarized [1-(13) C] pyruvate. CONCLUSION: We have demonstrated the feasibility of using zmPDC as an in vivo reporter gene for use with hyperpolarized (13) C MRS. Magn Reson Med 76:391-401, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Piruvato Descarboxilase/metabolismo , Ácido Pirúvico/farmacocinética , Proteínas Recombinantes/metabolismo , Zymomonas/enzimologia , Animais , Ativação Enzimática , Feminino , Genes Reporter/fisiologia , Células HEK293 , Humanos , Camundongos , Camundongos SCID , Proteínas Recombinantes/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual , Zymomonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA