Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38842036

RESUMO

PURPOSE: Chondrocyte-based cell therapies are effective for the treatment of chondral lesions, but remain poorly indicated for diffuse lesions in the context of early osteoarthritis (OA). The aim of this study was to develop a protocol to obtain chondroprogenitor cells suitable for the treatment of diffuse chondral lesions within early OA. METHODS: Cartilage cells were expanded at low density in human platelet lysate (hPL). A test was performed to exclude senescence. The expression of surface cluster of differentiation 146, cluster of differentiation 166, major histocompatibility complex (MHC)-I and MHC-II and of genes of interest were evaluated, as well as the trophic potential of these cells, by the assessment of lubricin and matrix production. The immunomodulatory potential was assessed through their co-culture with macrophages. RESULTS: Cartilage cells expanded at low density in hPL showed higher proliferation rate than standard-density cells, no replicative senescence, low immunogenicity and expression of lubricin. Moreover, they presented an increased expression of chondrogenic and antihypertrophic markers, as well as a superior matrix deposition if compared to cells cultured at standard density. Cartilage cells induced on macrophages an upregulation of CD206, although a higher increase of CD163 expression was observed in the presence of low-density cells. CONCLUSIONS: These findings lay the grounds to explore the clinical usefulness of low-density cultured cartilage cells to treat diffuse lesions in early OA joints for both autologous and allogenic use. LEVEL OF EVIDENCE: Not applicable.

2.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396899

RESUMO

The Second International StemNet (Federation of Stem Cell Research Associations) meeting took place on 18-20 October 2023 in Brescia (Italy), with the support of the University of Brescia and the Zooprophylactic Institute of Lombardy and Emilia Romagna. The program of the meeting was articulated in nine sections: (1) Biomedical Communication in Italy: Critical Aspects; (2) StemNet Next Generation Session; (3) Cell-Free Therapies; (4) Tips and Tricks of Research Valorisation; (5) Stem Cells and Cancer; (6) Stem Cells in Veterinary Applications; (7) Stem Cells in Clinical Applications; (8) Organoids and 3D Systems; (9) induced pluripotent stem cells (iPCS) and Gene Therapy. National and International speakers presented their scientific works, inspiring debates and discussions among the attendees. The participation in the meeting was high, especially because of the young researchers who animated all the sessions and the rich poster session.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Humanos , Neoplasias/terapia , Itália , Terapia Genética , Terapia Baseada em Transplante de Células e Tecidos
3.
Biomedicines ; 12(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38672188

RESUMO

Macrophage-based co-cultures are used to test the immunomodulatory function of candidate cells for clinical use. This study aimed to characterize a macrophage polarization model using human platelet lysate (hPL) as a GMP-compliant alternative to Fetal Bovine Serum (FBS). Primary human monocytes were differentiated into unpolarized (M0) or polarized (M1, M2a, and M2c) macrophages in an hPL- or FBS-based medium. The protein secretion profiles and expression of phenotypic markers (CD80 for M1, CD206 for M2a, and CD163 for M2c) were analyzed. Subsequently, chondrocytes were tested in an hPL-based co-culture model to assess their immunomodulatory function in view of their possible use in patients with osteoarthritis. The results showed similar marker regulation between hPL and FBS cultures, but lower basal levels of CD206 and CD163 in hPL-cultured macrophages. Functional co-culture experiments with chondrocytes revealed increased CD206 expression both in hPL and in FBS, indicating an interaction between macrophages and chondrocytes. While markers in FBS-cultured macrophages were confirmed in hPL-cultured cells, the interpretation of marker modulation in immunomodulatory assays with hPL-based cultures should be carried out cautiously due to the observed differences in the basal marker levels for CD206 and CD163. This research underscores the utility of hPL as a GMP-compliant alternative to FBS for macrophage-based co-cultures and highlights the importance of understanding marker expressions in different culture conditions.

4.
Biomed Pharmacother ; 177: 117162, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39024997

RESUMO

We previously established a thermodynamical model to calculate the specific frequencies of extremely low frequency-electromagnetic field (ELF-EMF) able to arrest the growth of cancer cells. In the present study, for the first time, we investigated the efficacy of this technology on osteosarcoma, and we applied a precise frequency of the electromagnetic field on three human osteosarcoma cell lines, grown as adherent cells and spheroids. We evaluated the antitumour efficacy of irradiation in terms of response to chemotherapeutic treatments, which is usually poor in this type of cancer. Importantly, the results of this novel combinatorial approach revealed that the specific exposure can potentiate the efficacy of several chemotherapeutic drugs, both on bidimensional and tridimensional cancer models. The effectiveness of cisplatinum, methotrexate, ifosfamide and doxorubicin was greatly increased by the concomitant application of the specific ELF-EMF. Moreover, our experiments confirmed that ELF-EMF inhibited the proliferation and modulated the mitochondrial metabolism of all cancer models tested, whereas mesenchymal cells were not affected. The latter finding is extremely valuable, given the importance of preserving the cell reservoir necessary for tissue regeneration after chemotherapy. Altogether, this novel evidence opens new avenues to the clinical applications of ELF-EMF in oncology.


Assuntos
Antineoplásicos , Proliferação de Células , Campos Eletromagnéticos , Osteossarcoma , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Humanos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Esferoides Celulares/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA